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SUMMARY

The derivation of an approximate error characteristic equation
describing the transient system error response is given, along with a
procedure for selecting adaptive gain pérameters so as to relate to the
transient error response. A detailed example of the application and
implementation of these methods for a space shuttle type vehicle ié
included., An extension of the characteristic equatiocn technigue is used
to provide an estimate of the magnitude of the maximum system error
and an estimate of the time of occurrence of this maximum after a plant
parameter disturbance.

Techniqpes for relaxing certain stability requirements and the
conditions under which this can be done and still guarantee asymptotic
stﬁbility of the system error are discussed. Such conditions are
possible because the Lyapunov methods used in the stability derivation
allow for overconstraining & problem in the process of insuring stability.

Practiéal implementation problems such as system noise and in-
complete state feedback are studied and results given in terms of a
bounding criterie on the system error. Under these conditions,
asymptotic stability discussions are inappropriate and instead one

speaks of bounded stability or stability in the large.
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I, INTRODUCTION

During the last twenty-five years the theoretical developments
makiné up the classical feedback control theory havé been in congtant
use in the design of automatic controllers. In most commerical applica-
tions in the past, using the classical tools of Nyguist and Bode plots,
root-locus methods, etc. the designer was able to develop systems
satisfying a set of somewhat arbitrary performance indices, i.e. rise
time, peak overshoot, bandwidth, etc. With the advent of the U. S.
space program, the requirements of guidance and control for space
vehicles demanded more and varied analytical tools than were offered
by classical theory, and hence was born what is now referred to as
modern control theory.

Virtually all of the theory of both the classical and modern
control sciences required as a basic assumption that the plant be time-
invariant or that it vary in a well described manner. Starting with
the ground-breaking work at MIT in 1953 [1], the study of adaptive
control systems began. The major reason for interest in sqch a control
area was the knowledge that a large number of physical processes were
inherently time-varying and optimal and classical techniques left
much to be desired. As a corollary to this, new techniques for system

|
identification were desired.



By the mid - 1960's the groundwork for the study of adaptive
control systems was laid. The most promising form of adaptive control

studies appeared to center around those methods based on Lyapunov's

Second Method and model-reference adaptive systems (MRAS) [2,3,4], a
technique which, as part of the désign process, can be used to guarantee
stability of the adapted control system without need for an analytical
description of the solution to the dynamic system,

A particularly promising form of adaptive controller that was

based on the idea of on-line, time-varying feedback gains was published
in 1968 [5] and then later extended to more general cases [6,7].
These methods suffered from the need for very slowly time-varying plants,
although no knowledge of plant parameters was needed. This limitation
was later partially removed [8].

Some of the shortcomings of these MRAS design techniques included

(a) all states must be available
(b) no noise present
(c) rate of convergence of the errors was unknown due to
the non-linear, time—varying form the closed-leoop
adaptive controller assumed
Analytical studies of incomplete state feedback [9,10] and stochastic
noise [9)] were performed to extend the adaptive controller studies to
include real-world problems. An approximate solution to the error
convergence rate is given in [6] and generalized to a number of different

types of MRAS controllers in [11]. At least one study neglected all



physical - realizability conditions and used a controller requiring
complete knowledge of the plant in order to adapt the plant [12].

As mentioned eéflier, adaptation and identification are similar
problems, and using the Lyapunov approach to MRAS type controllers it
is possible to develop identification algorithms which can be used in
a real-time environment to continuouély identify a system without.
need of disturbing the system [13,14].

Although research was originally financed through the spacé
program, there are a number of areas whére adaptive control is presently
under active investigation. Some of these areas inclﬁde (1) anti-skid
braking systems where the human driver represents a time-varying,
statistically indeterminate plant, (2) chemical processing plants
where optimum control of temperature, pressure, humidity, and material
flow is extremely important té insure maximum monetary return,

(3) a re-entering Space-Shuttle-type vehicle where wide variations in
atmospheric conditions cause stability difficulties, (4) high per-
formance aircraft and missiles. Specifically, many of the areas of
study covered in this report stem from problem areas related to Space-
Shuttle-type vehicles. Corrupted measuréments of position, velocity,
and acceleration of such a spacecraft, computer and A/D and D/A
round-off, incoﬁplete state feedback, and saturation are some of the
real-world problems which allow, at best, only a prediction of stability

regions.



The purpose of this study was to extend the theoretical work on
model-reference adaptive control systems ocutlined in the Second
Technical Report. Specifically, this report is concerned with
practical considerations that must be accounted for in implementing
an MRAS controller within the framework of real-world problems.

These practical considerations include (a) noisy input and state
measurement, (b) extending stability bounds and still guarantee
asymptotic stability, (c) need for a design method for selecting
adaptive gain parameters and relating them to the error dynamic re-
sponse, (d) stability criterion for the case of incomplete state feed-
back. Analytical stability results for these cases could then, together,
reveal something of the overall stability of a plant in a real-world

environment.

There are four chapters subdividing the material into major areas
of investigation to the body of this report, in Chapter II is derived an
approximate solution to the non-linear time-varying, adaptive error
differential equation. This results in a general equation relating
the error response to the values of adaptive gain parameters. Using
an extension of this idea an approximate method for estimating maximum
error magnitude is derived. In Chapter III is outlined procedures for
extending the conditions for asymptotic stability of a MRAS controller.
This is an important consideration as one of the drawbacks of Lyapunov
designed controllers is that sufficient but not necessary conditions
are obtained and this may result in an adversely limited stability

criterion. Chapter IV outlines the theory for the case of stochastic
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systems and incompiete state feedback. Results are available only for
very restrictive cases as would be expected. An example ig included
to illustrate the procedures discussed. Chapter V discusses a few of
the practical considerations in physical realizabiliﬁy of adaptive
ﬁontrol laws for a Shuttle-type vehicle. Included are results of a
control phase-over routine from RCJ to MRAS during atmospheric
re—entry. A number of simulation results are included for wvarious
practical controller implementations. In addition, a discussion of
computer computational requirements is included, resulting in a series

of graphs relating computer time to various system parameters.



1I. DERIVATION OF A DESIGN IMPLEMENTATION TECHNIQUE

Most proposed model-reference schemes employ Lyapunov's direct
method in the design procedure so as to guarantee sufficient conditions
for asymptotic tracking of the model by the plant [15]. A number of
model-reference schemes have been proposed in the literature [3,5,6,
7,16} which work rather well in practice. In all cases, however, no
general technique has been put forward for selecting the constants in
the adaptive gain equations so as to cause the plant to track the
model with a pre-determined error dynamic respense. In the past the
choice of these constants has been a trial and error procedure at best
because of the inherent non-linear nature of the adaptation dynamics,
even when the plant is linear. Because of these non-linearities an
exact closed-form solution of the error dynamics as a function of the
desired constants has not been possible and an intuitive "feel" for
the relatioh between choice of the constants and the resulting
response is difficult to obtain. Ccnsequently, simulation studies
have invariably been necessary to obtain an acceptable set of adaptive
gain constants. In this chavter a straightforward method for choosing
these constants is given.

The major result of the derivation which follows is a general
eYror characteristic equation which relates the error dynamic response

to the adaptive gain coefficients. Through an extension of this



approach a means of estimating the maximum error and the time aftrer a
perturbation from e = 0 that this maximum error occurs is given.
The results show the error magnitude at time t2 to be a function of
the plant parameter disturbances at time t1 < to.

A number of simulation examples are given throughout the chapter
to illustrate the implementation of the techniques. An example of
the pitch axis of a space shuttle vehicle is given to show the

implementation of the adaptiwve gain parameter design method. A second

example is included to illustrate the magnitude estimation procedure.
A. Problem Formulation

The basic equations defining the MRAS controller are considered

in this section. The basic plant and model state variable formulations

are
l!p(t) = Ap(t)Ep(t) + Bp(t)g(t) (I1-1.4)
x (t) = Amgm(t) + Bu(t) (I1-2.4)
where
Ep(t) - n x 1 plant state vector
X (t) = n x 1 model state vector

=-m

u(t) - r x 1 input vector
Am’Ap(t) - n X n matrices

Bm,Bp(t) - n X r matrices



8
It is assumed that the elements of Ap(t), Bp(t) include unknown,
slowly time-varying or time-invariant parameters. Adaptive gains
Kija(t) and Kijb(t) are to be implemented in the plant controller in
order to forece the plant states to follow the model states. These

-gains are defined as

]

fa P = [ a(t)+xija(t)j, (I1-3.4)

cij

]

p b b -
Ibij (t)] [cij (t) + Kij ()1, (II-4.4)

and serve much the same purpose as the fixed optimal control gains
obtained using calculus of variations. The major difference in concept
is that the adaptive géins must be calculated on-line since the

system dynamics are not completely known in advance. The gains are

computed s0 as to cause the response error
e(t) = xp(t) - x,(t) (I1-5.A)

to tend toward zero. The basic plant-model dymamics with adaptation
are shown in Figure 1.A.

Using (II-5.A), the error state equation is derived as follows:

e(t) = x, () - gi:p(t)
e(t) = [agx (£ + Bgu(e)] - [A,(Dx(£) + By()u(t)]  (11-6.4)

Adding and subtracting Ajx,(t) allows (II-6.A) to be written in the form
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e(t) = Ae(t) + [A - A, ()1, (6) + IB ~ B (6)]u(e)

£(6) = Age(e) + AMD)x, (£) + B(D)u(t)  aI1-7.4)
where .

A(t) = A - Ap(t). | , (I1-8.4)

B(t) = Bm - Bp(t). (I1-9.4)

The basic purpose in using a Lyﬁpunov function in the design procedure

of a model-reference adaptive control system is to guarantee that the
system error is asymptotically stable. By constructing a Lyapunov
function positive definite in e, such that V evaluated along the state
trajectory is ﬁegative definite in e, the system error will agymptotically
approach zero thus assuring that the plant is tracking the model. A
number of appropriate Lyapunov functions have been proposed in the 1lit-
erature [2,3,4,5,6]. The Lyapunov functions in {3,5,6,16] are special

cases of the one in [7] which is used here and is given in (II-10.4).

n
Va ETQE + Z —_ {ai] + Bij ) exdkiXpy +
jﬂl 1j k=1
n }2 n IZI 2
cs 4 , + o .
P13 [ kr)a:l equlxpj]_ : i,jl 13 [ k=1 equix”]
Pf I
+ —_ {b + 61 eLqkiys
i=1 j=1 Yij 4 Tkm1 i
n 2
+ oy E[ gl O e jJ 2+ 1£1 321 013[1(21 EquiujJ -

(I1~10.4)
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In the above equation, Q is a2 symmetric positive definite matrix, aij
and bij are elements of the A and B matrices, “ij and Yij are constants
greater than zero, and Bij’ pij- Gij’ and Gij are congstants greater
than or equal to zero.

Taking the time derivative of V in (II-10.A) and evaluating alomng
the error trajectory given in (II-7.A) results in a sign indefinite

V. If the aiy and bij terms are chosen to be of the form

n i
a1 = =44y kzl erdiiXpj = Big '3':‘ [kgl equixpj}

n
- .dE . . » i 3 j = 1 ,2 “en -
pij dt‘.2 [ kgl equlpr] J » 11 (II-11.4)

n n

. . d
byy = vy kzl ekiki®y ~ 81y “EE[ kil equiuj:‘

23 .
-oij -g--- zl Equiu:j] - i“l,z,-co,n and J‘l.z..-o’r

del k=
(I1-12.4)
then the resulting V expression reduces to
. T. T n n
Ve e (AmQ + QAm).e_ -2 Z Bij [Z equix'pj]
1,3=1 k=1
n 2
-2 ? f 613 [ ) equiuj] . (1I-13.4)

i=1 j=1 k=1

The complete derivation is given in [7]. The last two terms in
(IT-13.A) are at least negative semi-definite since the Biy and 655 are
constants greater than or equal to zero. It is well known [1] that if

the A matrix is stable, there exists a symmetric positive definite
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matrix Q which satisfies the equation AﬁFQ + QAml= -C, vhere C ig a
symmetric posigive definite matrix, Therefore, if Am_is stable, the
first term in (IIfl3-A) is negative definite in e thereby making V negative
definite in e. With V positive definite in e and V negative definite
in e, the error e = L is guaranteed to be asymptotilcally stable.
The adaptive gain rates, Kij, ng are determined from (II-3.4),

(II-4.A), (I1-8.4), and {II-9.A) as follows

aij = a?_‘j = a?-j ] a?j - ng (t) - K?j(t)’ (11_14.A)
bjj = b?j - bgj = bﬁﬁ - ng(t) - ng(t). (11-15.4)

Taking the time derivative of (II-14.A) and (II-15.A) and using
the restriction that cgj(t) and cgj(t) are negligible compared to Kfj

and ng, the adaptive gain rates become

agj(r) = —Kj;(t) (11-16.4)

byy(t) = -k}, (©) (11-17.4)

Integrating (1I-16.A) and (II-17.A), the resulting K (t) and
ng(t) adaptive gain expressions become

n

Kis = @ d/”c ? eq dt + B Z €9 % .
3 ij o k9ki¥p3 13 5 ki®pj

e a
°ij : {Z kK p_]:f + Kj5(tg), (11-18.4)

vl
f [ equluj] dt + Gij kzl equiuJ

t0

11}
b
d + K, . . -
+ 944 S LEI equiuj:{ Ky g (t,) (11-19.4A)
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The QUi a;e elements of Q and must satisfy the relation AmTQ + QAm
Adaptation is implemented by meansrof these equations so as to cause the
plant to track the model.

In order to implement the adaptive controller, some criteria for
selecting the o, B, p, v, §, o adaptive gain parameters other than by
trial and error simulation is needed. In addition, some means of
determining the [qij] elements is desired, inasmuch as the requirements
that

(1) Q be positive definite
(2) AmTQ + QAm = negative definite matrix
will offer, in an indirect way, only bounds for the values of the

individual elements of Q. The following section addresses this problem.
B. Development of the Linearized Error Equation

In this section, a technique for obtaining an approximate solution
to the adaptive error dynamic state equation is given. This metheod is
based on a 1ineariz§tion of the error dynamics about a set of plant
operating conditions at the instant that a perturbation in plant
parameters occur. The linearization is necessary because, although
the plant and model described by (II-1.A), (II-2.A) are linear, the
resulting adaptive controller is non-~linear. This comes about from
the gains given in (II-18.A) and (II~19.A). To show this expand

(II-18,A) for the particular case i = 2, § =1,

-C.
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r
a
K21(t) = ayy f s dt + 821[8]
o
+p,, d_ [S] (1I-1.B)
21 3¢

where
S = (e, 921 + ez‘lzz)xlp(t)

Substituting e; = X, - X5 and e, = x, - X5 into (II-1.B) yields

m
2
S =[xy, X1p(t) = x35(8) Japg + [x1p(E)xpy = %7 (t)xpp (£) 1qy,

Similar results can be obtained for the general case for both K?j(t)
and K:j(t). It is clear that the gains involve both squares and cross
products of the plant states, resulting in a non-linear feedback law.

Because of the large amount of work involved, the technique is
first presented for a second order system with a scaler input. The
results for an nth order system with r-inputs are presented at the end
of the section.

Consider a second order plant with the linear,.time-invariant

transfer function

p
x, (s) _oe) . b, (1I-2.B)
@ EEEI)

The plant equations in phase variable form are
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Xl f} 1 Xl o
P p
= + U. (II-3.B)
a a a a b b
X, (egy + K510 (epp + Kyl %y ey T Ky
P P
The model is described in phase variable form by
Xm 0 1 le 0
= + U. (I1-4.B)
3 n am b
*om 81 %2 om m

Substituting (II-3.B) and (II-4.B) into (II-7.A) yields the error

differential equation

él 0 1 e r0 0 X b ]
1 1p
= + + U, {II-5.B)

. m m ‘ b

®2) P21 %22 f2) ;P22 [Mop 2
where

a al. - ¢ e a = a -c - ka

21 21 21 21 22 22 22 22
and b b

b2 = hmA— c2 2°

represent the plant parameter errors.

The equations for the three adaptive parameter rates may be

obtained from (IT-11.4), (II-12.4), (II-16.A) and (II-17.4)

a
K& = “Zi(Y) + 8

2
’t (¥) +p,, d” (D), i=1,2, (I1-6.B)

d
21 5+
dt dt2



15

where %
Y = equzx s
k=1 Pt
and b
K2 = 72(2) + 62 da (zZ) + c d (Z), (I1-7.B)
dt 2
dt
where E
Z = € g, Al
kel k'k2

Assume that a constant input U° has been applied for a long tiﬁe
and that the plant is tracking the model. The system parameters in
this equilibrium state are given by X, = 33, U= UO, e=e=0,
Kgl = Kgf, K;Z = K;;, and Kg Kgo. We shall derive the characteristic
equation for the error el(t) assuming that a small disturbance occurs
in any or all of the adaptive parameters, thereby causing a resulting
disturbance in the plant states. Expanding (II-5.B), (II-6.B), and
(II-7.B) in a Taylor's series about the equilibrium point and truncating

all second and higher order terms vields

de; = de,

b
Aez = (c21 + K21)ﬁel+ (c22 + KZZ) AeZ xl K21 - x2 Kzz - UDAKZ

.

8K, (“21q12x1p + BZinlep + p21q12x1p)Ael (11-8.B)
+ (“21q22x1p + B21q22x1p + p21q22xipme2
0 .o L]
o (Bpya19%5, * 2p21q12xip)ﬂel * (8531992%5p*20 21 92,%1 ) 8¢,
* P23q12Xiphel + piqz2x%iphey, 1=1,2
.b O - (9 -
AKp = YquzU Ael + Yzqzzﬂo Aez + qulzub &el + 52q22u5 Aez

+ oquZUDAel + 02Q22U°A22- (11-9.B)



16

‘Taking the Laplace transform of (II-8.B) and (II-9.B) using the
0 0 0 0 0
relationships X1 = %on = x1m =X, =X = 0 and AEZ(S) sAEl(s) and
substituting the resulting expressions for AK;l(s), AK;Z(B), and

b, . Ce
AKz(s) into (II-8.B) yields
Yoo

' ' . ; ' 02 .2
{BIBZ-S (cgz"l'Kgg) - i(cgl + Kgg)] + I(GZIXim'szuo )
* 88,332 + 6,08 + s (0282 + 0,09%)]q), +
B[(u21x21-+ Yzsz) + 5(521335 + 62U92)

+ 820,02 + 0,000 10z, ) 8E(8) = (G KEPHOIG®)
(I1-10.B)

In (II-10.B) 1let

2 2 2 2 _
K, = a211°1m + Y2U° » Ky = Bleg.m + 62U° . (I1-11.B)

and

2 2
[»]
Ky = 0y + 0,00

The characteristic equation for the error e(t) can be obtained
by setting the coefficient of AEl(s) in (II-10.B) equal to zero and
dividing by the first term in order to place in the standard form for

plotting root loci (i.e., 1 + KG(s) = 0).

q32 K]_(s-i'qlz/_qzz) (1 +Ky/ s+ K3/ 82)
i K1 K1 -0

sls2 -(c2, + K%)s ~(cd; + K3)) (11-12.8)

1+
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This is of the form

1+ K(s + 8)(1 +bs + cs?) -0 (11/13.B)

2 a ao a ao
s[s™ - (ea3 + Kypds = (cpy *+ Kpp)]

where K = qZZKl’ as= q12/q22’ b = Klel, and ¢ = K3/K1. The compensator
thus looks like a proportional plus integral plus derivative (P-1-D)
controller with an added zero at s = -a = -q12/q22‘ In the adaptive
scheme proposed by Gilbart, Monopoli and Price [6], K3 is zero since
Paq1 and 05 do not appear in the adaptive rate equatiomns. Their equa-
tions. Their compensator, therefore, is a proportional plus integral
controller with an added zero at s = -a. In the adaptive control
scheme proposed by Winsor énd Roy 51, K, and K, are zero since 821,
62, Po1 and 9, do not appear in the adaptive rate equations. Their
compensator behaves as an integral controller with an added zero at
8 = -a.

The above procedure is easily extended to include the general
case of an nth order plant with r inputs. In general there will be
nr transfer functions between the r inputs and n outputs. The transfer

th h

function between the i~ input and the jt output is of the form

b3 sﬂ—l + ‘bi‘:i s*?'-2 + ..+ bi‘_}._ s + bij

Gij(S) = L £=15, L » for £<n,
s® + alsn'l + azs“'z + oou t ap.1 8 + 8,

and fori“l,z, ..-,r;j-l.z, vesy Dha (II_lA-B)

If the system can be put in the form
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é'= Ax + Bu where
0 1 0 0 0 B .
e ll blz LR blr
~ Q 0 1 o ... © - b b
a=]. . . B 21 T22 2r
L7%, %1 v -al a1 P bnr- ’
‘ (II-15.B)

then the results of (II-12.B) can be extended to the case of multivari-
able systems. The general conditions under which such a transformation
can be made are discussed in Appendix B. Using equations (II-2.B)
through (II-12,B) for the cases of n = 1,2, """ and r = 1,2, ***, by
mathematical induction a general expression for the linearized adaptive
érror characteristic equation was developed. The general form for

this equation .then becomes

n ' P
k-1 i-1
WLy G 1[121 i ° ]

1+ 4 =0, (1II-16.B)
sAm(s)
.where p is the type of controller defined by
1, Winsor and Roy, B =p =8 = g =
p = 2, Gilbart, Monopoli, and Price, p = o = 0
3, Boland and Sutherlin
02 o
and Kl f @ 1% gy (Yll +vyyt e Ynl)Ul

2
+ lyp F Ygy Foaen +Yn2)Ug + ..
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02
(Ypp ¥ ¥pp + oot v UL (I1-17.B)
2 02
Ky = Bo1x, 07 + (649 + Sy F oon + SqUL
02
+ (6,4 Sgp + ouu ¥ 6_5)00
2
A (11-18.B)

Foaeet (8 F St i+ 8

2 0
K3 = 0q1%19 + (049 + 0pq + ven + 0n U]

+ (01y ¥ Tpy + oae + onz)ng
Foaek (ot Oy F o+ onr)ugz. (1I-19.B)

Note that for n = 2, (II-16.B) reduces to
L4 (222 48 By + Kys + K4s2) (11-20.5)

sip(s)

which agrees with (II-12.B) if one assumes that the plant and model

dynamics are identical before the small perturbation occurred.
C. Decoupling the Input From The Linearized Error Dynamics

The general expression for the linearized adaptive error equation
in the form of the characteristic equation of a single loop negative
feedback system 1 + GH(s) = 0. The locus of the error roots as a
multiplicative parameter gain in GH(s) is varied can be sketched using
the well known root-locus techniques. These error loci begin at the

zeroes of

sAp(s) = 0 (I1-1.C)
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Tepresenting the model poles Ap(s) and a zero at the origin due to

the integration in the adaptive gain expressions, and end at the zeroes

of the polynomials

. n -
[ E Kys" Y ’ qknssk 4 (1I-2.C)
i=1 k=1

The zeroes of the second factor depend on the values of the elements

of the Q matrix which are chosen to satisfy

a o+ oy = ~c (II-3.0)

in order to guarantee asymptotic stability. The zeroes of the first
factor depend on the relative values of ISERST and K3, all greater '
than 2zero, as given in (II-17.B), (II-18.B), and (II-19.B). Factoring

K, out of thisApolynomial results in
2
kl(s + bs + ¢}, where b = K2/K3’ c = Kl/K3 (II-4.0C)

The roots of (II-4.C) are

g = (-b £\ /6?2 - 4c ) 2 . (1I-5.C)

The dependence of these roots on the various input magnitudes as well
as xlﬁ is evident in (II-17.B), (II-18.B), and (II-19.RB). Unless

this dependence is eliminated, the ending points of the root loci,
determined by the zerces of (II-16.B), will be a function of the inputs
and xlg. This would mean the entire character of.the root loci would

change as the inputs and xlg'changed.
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Consider the second order system error characteristic equation

L. q22K3(s + qlzfqzz)(s2 + K2/K3s + Kl/K3) o
shp(s)

where Ky, Ky, and K5 are as given in (II-11.B). In (II-6.C) the gain

ratios are given by

2 2
By %1 + 6U°
/K, = —2171m and
K2 3 02+ UoZ
P21¥1m T 72
2 2
Qo X, 0+ v, U°
21 2
Ky/Kq = 12’2 ~ (11~7.C)
Pa1¥im T 920
If the adaptive gain parameters are chosen such that
72/a21 = 62/521 = Gzlle = d = constant (I1-3.C)
then (II-7.C) reduces to
2 2
Baq (%,2°+ @ UPT)
Ry/K, = 2L 1“‘2 5= 2L = b (11-9.C)
2 ol
and Qn, (%2 +dU ) @
K, /X, = 21 131 =7 p21 = ¢ (11-10.C)
Pa1 ¥+ 4 21

In this manner, the zeroes of (52 + K2/K3 s + K1/K3) are made independent
of the magnitudes of the input t° and xlg and the shape of the root locus
became a function of the a-priori fixed a, B, p, v, §, 0 adaptive gain

parameters, with the actual root location on the loci being a function
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only of the gain factor 4,9 Ky. Comparing (II-8.C) with (II-18.A) and
(II-19.4A) indicates that this'éhoice simply places a weighted emphasis on
the three terms in the Kfj and ng adaptive gain expressions. This is
a logical choice since 1t would not be uncommon to place more emphasis
on the adaptation of certain paraméters than on others. This is done
through the proper choice of the constant d. ‘The constants b and ¢ in
(I1-9.C) and (II-10.C) establish the weighted importance of the pro-
portional and derivative terms to the integral term in the adaptive
gain expressioné. These ratios are the same for all adaptive gains,
The above results for the second order case with scalar input can
be extended to the nth order case with r inputs. By doing so, (II-17-
18-19 .B) result. In order to insure that the ratios K1/K3, KZ/K3’

K;/K; are independent of variations in input magnitude and state values,

if the expressions
(rgg * Yaq *-oYa?)

(Ypp % Ygp Feepp)

.

G +v, +eeey )
r nr

1 2r

are related to o ; and similarly with the 6's and B's in K, and o's and
p's of K5 in (I1-17-18-19 .B), then if the adaptive gain constants are
chosen to satisfy the following relationships, decoupling of zero place-

ment from input magnitudes results:
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anl Bnl pnl
Vg ¥ Vg Feee Yo 2 8yp T Spp Fee it 8y gyt Opy Feuit o, c,
%n1 Bnl Pnl
LN B +II.
Yip ¥ Vo bt v, S0 F Sgp T Sar = T1e " %y t %y = Cr
%hl Bal Pal
(I1-11.0)

where Cl, CZ""’ Cr are positive constants. Substituting (II-11,C) into
(I1-17.B), (11-18.B), and (II-19.B) one obtains

02 02 02 02
Ky = o (x] + C U + Cuf +...+ CUD)

2 2 2 2
= o o o . s o —_ .
Ry = B (g ¥ GU5 + U3 +ee et C U7 (1I-12.C)
o, oo 2 . o
K3 = pnl(xlm-+ Cl it CZUZ +...+ CUD ).

Using (II-12.D)

Ky/Kg = Bo1fegy = b and Ky/Rg = o 9/00p = ¢ | (1I-13.¢)

and the roots of K3 (52 + bs + ¢) are independent of xgm, Ug, Ug, vees

)
Ur.

Such a "decoupling" scheme would have practical implications in
terms of the control of aerospace vehicles, wherein, a well defined error

response would be highly desirable over a wide range of inputs. Such

conditions could occur in a space shuttle vehicle in regards to varving
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RCJ thrust levels and varying roll-pitch-yow commands (given by elevon
motions) required to stabilize the vehicle. The following is an example

which shows pole-zero movement with and without the decoupling procedure

being used.
Example
2nd order, 2 inputs
Gm; (s) = Gmy(s) = ~2—}———- (II-14.C)
= Gm, = ~14,
. s +25+2
% %
G . (s) = ———t G,o(s) = —_— (II-15.C)
1 S'2+28+32§ P 8 +2S+32{

p
Ay s 8y, 853 adapting

With two inputs and p = 3, (II-16.B) becomes
2
+K_/K_s+K_ /K =
Ryly, (87915705, (STHK /K 4K, /K) = 0 (1I-16.C)

1+ 5
s(z +2st+2)

Selecting as suitable parameters

a3 = 40 Bpp =40 ey =100 qpp =2 gy =1

2 2
(s + Ky/Kys + K /Ky) = s° + bs + 4 = (s + 2)

2 2 2
- o o o
Ky =80 x, vy U1 + v Uy
2
2 2 .o
Kz = 40 Xlg + 521 U]o_ + 622 U2 (II-17.C)
2 2 02
- o
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DECOUPLED CASE

In order to "decouple" the error dynamics of a; and ¢, as compared

with aZE in (II-15.C), it is necessary to employ (II-11.C)

V21 521 921
—_—— a —— = I o = 1.0 I1- .

Yoo S22 Oa7 _

= 2.0 (1I-18b.C
@3 P21 Py 2 )

F

I
Q

]

Using (II-18a,b.C), the K, in (II-17.C) became

2 2 2
o} 0
40 (07 + 1.0 U9 + 2.0 U3 )

~
It

2 02 02
Ky = 40 (xlg + 1.0 U7 + 2.0 U b

2 2
= 10 (%,°7 + 1.0 u) + 2.0 03 )

w?':
[

and (II-16.C) reduces to

2
10(x,0%+1.0 19%2.0 US") (s+2) (s2+4st4) = 0 (11-19.C)
1+
s(sz+23+2)

For the particular cases of

(a) U =3, =0, xqp = 3/2 (II-19.C) becomes

L 129 @)? (I1-20a.C)
s(sz+23+2)

() U9 =3, 15 =6, xyp = 9/2 (11-19.C) becomes

1+ H1082:5) (o+2) =0 (II-20b.C)

s(sz+23+2)
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The root loci and location of the closed loop poles for (II-20a,b.C)
are shown in Figure II-1a,C. Note that the "shape" of the root locus
is input magnitude invariant, although the root locations are a function

.of the input magnitude.

COUPLED CASE

Now consider the same example without using (II-11.C). Such a

case would be

Y21 891 21
=Ky =1 -2lag =2 2_og -3
%1 1 B21 2 py; 3
Y § O, =K =6
22 22 22 = K,
-d—— = K4 = 4 —""‘B = KS = 5 ;‘-——
21 21 21

Using these numbers in (II-17.C) results in the zeroes of (I1-16.C) being

2
a function of xlzz, U;z, US . For the same conditions as the "decoupled"
case
o} o o . ‘
(a) U1 = 3, U2 = 0, x = 3/2 (II~16.C) becomes
2
29,25) (s+2) (s°+2.778s+1.538
1+ ¢ ) 2 2 =0 (II-21a.C)
s(s"+2s+2)
2
. 2 +3,32s+2.64
(b) 1+ 263:23) (s+2) (s Lo (I1-21b.C)

s(sz+2s+2)

Figures II-1b.C and iI—lc.C show the root loci and position of the
closed loop error roots for (II-21la,b.C). Note that as the inputs change,
the entire shape and character of the root loci changes. From the stand-

point of well-behaved error dynamice, this is a highly undesirable
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je 1%

fi

(a) (b)
j‘(ﬂ

(c)
Figure II-1.C. Various Root Loci Configurations Comparing '"Coupled"
and Decoupled Design Techntiques.
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situation. Hence, in order to obtain a good design, with well defined
error dynamics, the decoupling scheme in (II-11.C) should be used, it
requires no additional computational difficulties and the degree of

control that results is well worth it.
D. Application of the Error Equation

The design of an adaptive controller using the class of model-
reference schemes discussed consists of determining the best combination
6f values for the adaptive gain parameters a, B, p, v, §, 0 and the qij
elements. At best this is a trial and error process unless some system-
atic technique is utilized. The basic error equation in (II-16.B) will
now be used to develop a design method based on the location of root
loci as the adaptive gain parameters are adjusted. The location of the
roots of the linearized error characteristic equation in the s-plane
will, to a first order approximation, completely characterize the nature
of the transient response of the system error. By going to a linear
system description of the errof, the familiar figures of merit from
classical controls such as rate of convergence, settling time, per cent
overshoot, etc. can be used.

That the design methed is based on the small-signal approach is of

no concern, because completely independent of the design technique the

plant has been guaranteed to be asymptotically stable using Lyapunov
theory. In this way, if an errer perturbation occurs, even if it is
very large, the adaptive system will force the error towards zetro, and

the closer the error gets to zero the better the small signal approximation.



29
By designing for a very fast transient response the error will be forced
to be near zero., This is a noticeable departure from the usual analysis
of systems by small-signal approxmations. At no time is (II~16.B)
implemented as part of a control system. It represents only an analyt-

ical tool to aid in design of an efficient, practical MRAS controller.

Example: Application of the Error Equation to a Space Shuttle Vehicle

This example clarifies the design method applied to the pitch-axis
attitude control system of a space shuttle vehicle using aerodynamic
control surfaces during re-entry. Because of the extreme variations in
altitude and velocity encountered, the plant dynamics are time varying
with order of magnitude changes of as much as 200 occurring.

The basic vehicle configuration is shown in Figure (II-1.D). It is
assumed that the pitch axis is decoupled from the roll and vaw axes,

The linear time-varying plant dynamics are obtalned as follows:

6 = £ (a, 8, 6,) (1I-1.D)

Mpitch - Ipitch e

where a = angle of attack (radians)
& = pitch rate (radian|sec)
Se = elevator deflection (radians)
IPitch = moment of inertia of the pitch axis of wvehicle

Expanding fm in a Taylor series about o,, 6  and Beo.yields

L) . afm Bfm - .
fnla, 6, ) = fp(a,, By 6%) + T (a-o,) + -ﬁ—-(e—eo) +

of
m
53;(62—580) + higher order terms (HOT) (II-2.D)
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X-axis
o
& s
a
& 7
a angle-of-attack /’,f
-~
p pitch angle
P - Relative Wind
0
Horizon
y axis
z axis

Wing and Elevator Configuration -

Figure 1I1-1.D Re-Entering Space-Shuttle Vehicle
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By selection of appropriate axes,

I ovf a4+ f..0+ £ B (TI-3.D)
pitch —m, mg o, e

where fmu’ fmé’ f represent moment stability derivatives. Through

T8 e

some involved calculations, these moment derivatives can be related to

the well known aircraft stability derivates Cma’ Cmé, Cma as follows
e .

= 2 . =
fma CerSreff 21, - Cq, = €y C“‘a
—_ 2 - . == - -
fmé = ¢ pvrsreffup Cmy = C2 Cme (I1-4.D)
= 2 . =
£ = V£S 21 c =C .
mﬁe Py rEf/ p mﬁe 3 C“‘e

where
p = air density (time varying duwe to altitude changes)

Sref = yvehicle reference cross sectional effective 1lift area
c = vehicle characteristic length (used to normalize stability
derivatives)
Vy = vehicle relative velocity

Cp = aerodynamic stability partial derivative taken with respect to x.
x
Because p and Vi vary with time in an indeterminate manner {dependent
upon re-entry trajectory which is controlled "on-line' by the pilot) the

vehicle dynamics are time-varying.

Defining
x = e

the unadapted vehicle dynamies can be written as



= x + u (I11-5.D)

Plots of typical mission profile data for p and V, are shown in Figure
(II-2.D). Using nominal values for Cmu, Cmés Cmﬁe’ the actual time
varying plant coefficients are shown in Figure (II-3.D). With the
dynamics of the form ép = APEP + Bpg it is clear that the zero in the

aZE position implies a pure integration; hence the unadapted vehicle is
unstable. The basic attitude controller with the adaptive gains included
is shown in Figure (II-4.D). The equations of the plant with adaptation

are

. 0 1
* = a %2
= KZl(t) (Czcmé + Kzz(t)) XB(t)
0 0
+ b b u (1I1-6.D)
(clcmul + Kyq (1)) (clctlluz + K,p(t))

where Ki?(t) and Kig(t) are the adaptive gainms.
A model based on the two assumptions that (1) no complex roots are

desired and (2) a fast, over damped response 1s desired, was chosen tc be

_ -.05
(st1) (s+2)

(s) =% (s) = -.05 {(11-7.D)

8
U 2 s% + 38 + 2

For the plant chosen, specific parameter values used were U, = 1.047

{a=607), U2 = 1.13438(8e=65°), and ximé -.0545(attitude= -.0545 radians).

The general adaptive gain parameter equatlons are
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Figure 11-2.D Typical Time-Varying Physical Data Causing Time-
Varying Plant Parameters.
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II-3.D Typical Time Variation of Plant Parameters
During Re-Entry (adaptation must compensate
for the changes)
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‘ . e
a_ d a_ .
Kp1=a2l "‘:o Wodt + ByyW + 09751, Kyp=ap, f;o Y dt +

d
22de (1I-8.D)

b_ t d b_ t
Kpr™¥pp g, 2 dt+ 8532 + o1ge 21 Kpp=vy, .’;0 $ de +

d
5225_+ °zza'f[S]

where W=elq12x1ﬁ+ezq22xlp,_Y=elq12x2§+ezq22x2p and (11-9.1)
Z=elq12UI+e2q22U1, S=eqqqaUstenqs,U2

and the o, B, p, Y, 6, o, 41,9 999 values are yet to be determined,

In order teo choose appropriate values for the adaptive gains ao,
Bs Py ¥» §, and ¢ the root loci for the three model reference adaptive
control schemes in references [3, 5, 6) are plotted in Figure (II-5.D).
The loci begin in all three cases at the zeroes of the model character-
istic equation plus an additional locus beginning at the origin. The
loci end at the zeroes of (1 + qlzlqzz)(l + Ky/Ky s + K3/K; sz). In all
three cases the zero at -q12/q22 was chqsen to be -3 with'q12=l.26 and
q75=0.42. It is desired to locate this zero as far in the left half
plane as possibie. However, thié ratio is limited to three in this
example in order for the Q matrix to be positive definite.

Using the above values the characteristic equation for the Winsor

and Roy method is
k(s+3)
2438+ 2)

1+ = 0, where k = q22 Kl (II-IO.D)

s(s
The root loci for O < k < = are shown in Figure (II-5.D(a))
The Gilbart, Monopoli, and Price method has an additional zero a£
s =_-K1/K2. It is clear that this zero should be as far to the right

as possible in order to pull the root loci to the left. This zero should
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not be to the right of s = -3, however, since for high gains the root en
the réal axis is the dominant root and determines the speed of respounse.
The additional zero is placed at s = 4.5 and the error characteristic
equation becomes

1+ ks + 3D(s + 4.5) _ 0, where k =

q22K2 (II-11.D)
3(52 + 35 + 2)

The resulting root loci are shown in Figure (II-5.D(b)).
The additional zero in the Boland and Sutherlin method is placed

at s = -4.5 which yields an error characteristic equation of

1+ K+ 3 (s +4.5)72

= 0, where k = g95K (Ii-12.D)
s(s2 + 3s + 2) 2273

The resulting root loci are shown in Figure (II-5.D(c)).

In order to verify the results of the linearization procedure the
time response of the error for each of the three model-reference schemes
was computed. A gain of k = 10 was used in each case. The location of
the roots of the linearization error equation for this value of gain
are shown on the reoot loci in Figure (II-5.D).

In each of the three methods the conditions of (II-11.C) are
satisfied with C, = C2 = 10. Using these values of C] and Cj, the gain
k = 10, and combination of zero locations given in (II-10.D), (II-11.D),
and (II-12.D), the adaptive gain constants can be computed and are given

in Table 1.
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Table II-1. Adaptive Gain Values
The time response of the error e,(t) for the Winsor and Roy method is
shown in Figure (II-6.D(a)), where the model and plant states are identi-
cal at time t; = 150 seconds. At EE a step disturbance is given to all
of the adaptable parameters in (II-6.D). The disturbances are such

that at t = tt the plant transfer functions are

o]
8Cs) . .073 8(s) _ 073 )
6 G T @0 Er009)” U,y T G0 D

The model transfer functions are as given in (II-7.D). The response in
Figure (II-6.D(a)) is highly oscillatory as predicted by the root locations
in Figure (II-S.D(a)). The dotted line in Figure (II-6.D(a)) is the
unstable error response for the system with no adaptation.

Thé time responses of el(t) for the Gilbart, Monopoli, and Price
method and for the Boland and Sutherlin method are shown in Figure
(II-6.D(b)). These two responses plot as one curve since the real root
is the dominant one at this value of gain k. Apain the time response
agrees with the response as predicted from the root locations in the
s-plane. 1In all three of the adaptive control methods the error approached

zero asymptotically although the plant parameters are time varying.
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E. Adaptive Error Determination

As an extension of (II-16.B), representing an approximate char-
acteristic equation of the adaptive error, a technique for approximating
the magnitude of the maximum error and the time interval from application
of a disturbance until maximum error is reached is presented. Advantages
of the proposed error estimation scheme include:

(1) prediction of the maximum error and its time of occurrence

(2) éaturation non-linearities can be avoided, or at least

designed around

(3) simple solution of the error dynamics is available

(4) 1insight into the relationship between adjustable adaptive

gain coefficient selection and the error magnitudes is avail-
able. A simulation example ;s given demonstrating the
utility of the proposed method.

Referring to the basic second order derivation of the error

equation, it can be seen that (II-10.B) is in the form
b 7 .
AEl(s) (14GH(s)) = - [xlﬁ,] Kzi‘f’ + U°K2 o] (II-1.E)

where (1) 1+GH(s)~ represents the error characteristic equation {2)
Kz%o, Kgo— represent steady state adaptive gain values at. the instant
a perturbation occurs. Following along the lines of the previous error

derivation, (II-10.B) can be generalized to



i~1 (i-1)
AE. (s) { sA_(s) + K.s q,.5
1 m E;l i 1%;1 in
2 o L o (II-2.E)
= -[Knl X O+ Z'%: u;°K jbo] -
1
where
v<n
A
(II-3.E)
ii o
x, © = G_ (o)U
o =

m
E; Yepresents a sum of m terms not necessarily in consecutive order

Rearranging (II-3.E) and using the faet that

Ae(t) = e(t) ~ e(o) = e(t) - 0= e(t) {(II-4.E)
Ki c
AEl(s) = El(s) = I
sAm(s}FE: Kis E: ans J
i=1 i=1
where
Ki, c.represents an '"initial condition” gain
v L
= 1y ao -
SPNEE (XL o e

The denominator of (II-S5.E) represents the error roots which determine

the error convergence rate; i.e.

n - ¥y
q s(j L = 2:(s+pk) = 0 (II-7.E)

p .—
sa_(s) + | Ik (17D -
i=1 t j=1 7 k=1
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where

closed loop error roots

y=n-2+p

Time —
Figure II-1.E. Typical Error Versus Time Trajectory

Shown in Figure (II-1.E) is a typical error versus time trajectory
for an adaptive system with real dominant roots. Dividing the numerator

and denominator of (II-5.E) by the factor sip(s), E(s) can be modeled as

E(s) = K, G(s) (II-8.E)
"C 1 4 G(s) H(s)

1

where G(s) =
-

represent the open loop poles of the error dynamics
sA

s)
and

P n

= {(i-1) (i-1)

H(S) [Z Kis Z ans .
i-1 j=1

which is shown in Figure (II-2.E) as a single-loop feedback control

system with no input and output E(s). With no forcing function present

the error response 15 due soclely to the initial conditions. That this

is so should have been expected since the MRAS error is asymptotically



45

E(s)

s Am(s)

f(-) is a non-linear operator wich
transforms x;® and U° into initial
conditions for the error equation

Figure II-2.E Error Magnitude Simulation Model



46

stable and therefore must tend to zero independent of any forcing function,

Consequently, the only "driving function" on E(s) is the initial condition

gain Ki.c.

Because the MRAS scheme i3 not an identification technique, besﬁ
results for magnitude prediction are obtained only if either (1) all the
adaptive terms are numerétor coefficients of (II-14.B) or (2) all adapting
terms are demominator coefficients. The actual adaptation process works
equally well with all terms adapting; it is simply that no unique values
for Kn?o and the Kibo are then available. This is because the adaptive
controller identifies output state values (the error goes to zero) but

does not necessarily identify plant parameters. This means

2
G _(4) = —=—
w(2) 5+2
a, B adapting
o
6,() = g
then any.% = 2 might result, depending on initial conditions. 1If o is

fixed, then 8 would correctly identify the plant parameter,

It should be noted that the numerical magnitude of

ao v L bo
el = Kap mp+ 22 Uf (11-9.E)
J .

I

in no way effects the small perturbation linearization analysis. The

o .
magnitude of xlm depends only on the input and model and the Kij only on
the cumulative total plant parameter misalignments, The linearization

analysis presumes only that small changes Ki?’ Ki? occur at any given instant.
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Using partial fraction expansion and (II-6.E}, the inverse trans-

form of {(II-5.E) becomes
-
e(t) = Aje 1t + Azepz +.. +Ayepy ¥ yi(ntl), (I1-10.E)

The time at which maximum error occurs can be found by taking the time
derivative of e(t) and solving for the t at which e(t) =
In most work of practical and significant interest, e could be

max

taken to be
max
enax = h {e(th)} (II-11.E)

where there are h solutions obtained from é(t)=o. Two of the most
likely types of responses would be (1) a pure exponential decay or (2)
a damped sinusoid. Either one of these responses would result in
é(t)=o, implying a relative maximum br minimum of e(t).

Under the assumption that E(s) can be approximated by a second-

order plant with real poles

1
elt)=~ f\_ , 1. c’ (1I-12.E)

(s+p, ) (s+p, )(S+p )
where
n-1
P = z: Py if n=
i
1 if n=1
e(t) = K4 -p,t -p,t
—_c [; L. e 2 ] P1<P2 (1II-13.E)
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To obtain an estimate of emaxs Set

Qg(t) =0
dt

or

-p.t -p €
-p,© P1f + peP2 = 0 (1I-14.E)

from which the time interval t., representing the elapsed time from

occurrence of a perturbation to the occurrance of maximum error can be

found.

tm = 1n (plfpz) (IT-15.E)

P17P3

Substituting (I1-15.E) into (II-13.E) results in a simple expression

for estimating the maximum magnitude of the error,

ln(plpz) In P]_/PZ
emax ~ Ki.c. P17 o P2 _
P(Pz‘Pl) e 1 2 -e P17P2 (II-16.F)

An unusual happening with (II-16.E) is that |Ki-c_|, the initial
condition gain given in (II-9.E), is a function of the magnitudes of
the plant parameter disturbances occurring at the previous disturbance
time. If at time t adaptation starts and at time t,>t error steady

state has been reached and a set of plant parameter perturbations

occur, and by time t2>tl error steady state has occurred again
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then

le () | = EC]1E(T) lmax) Te(t ,tq ] (I11-17.E)

TE(tl,tz]

Following along similar lines, an estimate of the error bounds for
the case of a pair of complex poles and a dominant real root can be

developed. The error can now be related to the dominant root locations

as

Ki.c.
e(t)il ' ki (1I-18.E)

(stotiug) (sta-Juy) (s+p)

where s = -atjw, -p represent dominant roots of E(s). Using (II-18.E),

it can be shown that

K.
e(t) = l.c./P - £-90%-¢an{ 24 11-19.E
e cos fuyt-90"~ -19.
g2 A E'“) d o ( )
m .
d

+ Ki.c.fp -pt
e

Y2 2
(a-p) +md

Proceeding as in (II-14.E),

_ RYA"
de(t) = -che ot lacos wdt—QOO-tan 1(;—2)
dt \PT@

-1 :
+u g sin(mdt—QOO—tan (Eﬂ_)] ~c2pe'Pt =0 . (II-20.E)
p~a
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where

. Ki.c./p R Y, I

C =
2 2
l 2md2 1+ /p-a\2 (a-p)2+md
wg

{I1-20.E) is of the form

a, cos (mdt+8) + a, sin (wdt+6) + aqe PE . (I1-21.E)

which is a transcendental equation in t, the variable to be solved for.
Since ay, aj, and a, are known constants, (II-21.E} may be graphically
solved for those points, tj, which satisfy the equation. Substituting

the t; into (II-19.E) and determining

€ nax = ??i {e(ti)}' (I1-22.F)
yields a "best estimate" of the maximum value of the error.
Unfortunately, due to the uncertainty in the plant farameter
perturbations, the "direction' of the error time trajectory above or
below zero when a disturbance occurs cannot be predicted beforehand.

th

To demonstrate this, consider the following n orde; linear plant

: Ir- .
%n(s) N 111_]+ — —— (II-23a.E)
s +an_1§ an_zs oo taystay
th

and the n order model

Xm _ 1 (I1-23b.E)
—{s) n=1, m n-2 m_, . m
U s™all_;s 8.8 t...tajstag
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As before ey = x - X5 it 1s assumed that at steady state

e (t) =0, a"=2aP k=1, 2, ... n (11-24.E)

The sign of e dependsg on the "direction" of plant perturbation, i.e.

if a disturbance occurs at t = ¢

3]
+ +
e(t,’) <0 if aP(t,) <al® (I1-25.E)
et >0 if aPe™ >am
a 8] o] 0

Since the sign of e, depends on future conditions, nothing can be said

1
about sign definiteness. Since the error is defined as e = Xn = Xp,
then if e (t) < 0, k = 1, 2, ... n the plant state x,  (t) lags the model
state, and if ekp(t) > 0, the reverse is true. ’

The error magnitude estimation procedure can he of particular
value in the case of linear plants with a saturation non-linearity
of the type shown in Figure II-3.E. With a priori knowledge of the
expected range of values of U, a "worst case' design can be anticipated
and the appropriate adaptive gain parameters adjusted so as to allow
xlp to remain within the linear range of operation. Knowing a priori
a range of values of U and the plant parameter varlation, an estimate

of K ;2% and Kijbo can be performed; these values coupled with (II-9,E},

(I1-16.E), and (I1-19.E) allow estimates of maximum e; by maximizing

|Ki.c. ’
Assuming the plant output saturation value is Cg;, the maximum

allowable error, ey, is determined to be
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5 j -; Xl

S Gp (5 :
- e
Figure IT-3.,E. Nonlinear Problem.
|ea| =Cg - X0 (max) ' (11-26.E)

where le (max) is strietly a function of the input(s), since the model
has been fixed a-priori. If |e1| > ]eal, then the model and/or adaptive
gain parameters must be modified and [ell recomputed if plant saturation
is to be avoided.

EXAMPLE:

Consider the MRAS system with model

XP (s) = G, (8) = 2 n=2
o s2 + 25 + 2

and plant
le (s) = 2

s+ 28 +a P
21

where azg is an unknown and (possibly) slowly time-varying plant para-

meter. For the case of U = 4u{t), the steady state output of the
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plant becomes

4 . 2 =4 « G(O) = &
s s + 25 + 2

x 5,8,) = x = 1lim
lp( Im s+0

Using the development in [7], the root locus equation from (II-16.B)

becomes
+ +
1+ KL*TRes  ap +agps
s s2 4 2g + 2
o 2
where Kl = ag] xlm
Ky = By Xpp

and it is desired to determine dy9s q99» Qpqs B21 such that the error

roots are real. An acceptable compensation scheme is

1+ _K2922 (s + 2)2
s(s2 + 25 + 2)

=0 (I1-27.E)

which is in the familiar form

1+kP(s) =0
o 2
with K = q2(B21%1, )
A plot of (II-27.E) is shown in Figure (II-4.E). From an investi-
gation of this figure, a desireable set of error roots exists if k is

chosen to be 800. From this information a compatable set of parameters

is

ayy 10 821 =5 Qo = 20 q22 = 10
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The closed loop error roots for k = 800 are marked in Figure II-4.E and

are found to be

51 = -2.075 Sy = -1.935 s, = -798

Using the approximation in (II-12.E)

le(e)| = [Kp;2° xlm‘-’[ (.00879) e-—l.9325t_e-2.075t

(1I-28.E)

Initial conditions were placed on Kzi in order to force azi = 2 at

t=0. At t - o+‘a gtep disturbance was applied to azg. Figure II-5.E
compares normalized values (with respect to the predicted error response)
of e{(t) versus time for varicus initial conditicns on K;i' Note the

excellent correllation between predicted and actual results.
F. Design Implementation

Assuming the plant-model dynamics are expressible in the form of
{II-15.B), the first step in the design procedure is the selection of
appropriate, linear, time-invariant models. To date, little design
criteria, insofar as relating to MRAS controllers is available. Hence,
a-priori knowledge of physical conditions and overall performance
criteria must be used to select the models. At present, this is an
art more than a science.

Secondly, using A, (s) from G(s}, determine the error characteristic

equation as given in (II-16.B). It is recommended that (II-11.C) be
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Figure II-4.E. Error Characteristic Equation Root Locus
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employed also to '"decouple" numerator and denominator dynamics of
Gig(s). with these equations values for n of the qij values, plus the
_a, B, P, Y, 8, o adaptive gain coefficients can be determined so as to
obtain a desired transient response. Since this portion of the design
involves linear frequency methods, the well—knownrtools of linear
systems analysis can be utilized to define a 'best" response. Since
Q is a positive definite symmetric matrix there are n{n ; 1) distinct
terms. However, the aforementioned design method oniy supplies numbers
for n of the entries; hence n(n - 1) terms are left unknown. It is
R
necessary to insure that for the n elements of Q selected that the

n(n - 1) remaining elements form a compatable set such that

(1) Q is positive definite

(2) Ai Q + QA = -C when C is any positive definite matrix

1f Aﬁ is a stable matrix, a positive definite Q exists which satisfies
(2) [1]. Unfortunately, this method does not take into consideration
the transient error response. The inverse statement, given a Q a p.d.
C exists, is not necessarily true. Consequently, selection of the
remaining n(n - 1) Q elements is an iterative procedure; all that is
necessary is to show that there exists elements satisfying (1) and (2).
It should be pointed out that until now, one of the shortcomings
of using Lyapunov designed controllers was that no clear-cut technique
existed for relating the Q elements and the &, 8, p, v, §, 0 terms

Consequently, a common procedure was to select the Q matrix by using
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an a-priori fixed C (usually the identity matrix In) and solving for
the 4jj terms; the adaptive galn coefficlents were then chosen by trial
and error methods. As with the error equation linearization, there is
no unique set of qy 4 obtained from (2).

Although the linearized error equation in (II-16.B) is wvalid only
for small errors, the design method outlined can also be used in the
case of large errors. Since the adaptive error is guaranteed to be
globally asymptatically stable from Lyapunov theory, no matter what
the order of magnitude of the errors they will eventually tend to zero.
Once the errors become "small" the linearized error approximation is
valid. Estimates of transient performance of the system error for
large disturbances may not be valid, although simulation results for
a large number of cases tend to show strong correllation between pre-~

dicted response and large error disturbances.
G. Error Transient Response Determination With Lyapunov Functions

Under certain conditions, knowing the form of a Lyapunov function

V and its time derivative V, it is possible to determine the transient

behavior of the MRAS error dynamics. However, to be useful, it is

generally necessary that V be obtained as a function of time without
having to integrate the system equations. This requirement, plus the

need for the resulting V and V expressions to be simple have generally

not made it possible for the following method to be practical.
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Noting that

v = (11-G.1)

<<
<

if it can be established that the quantity | V] is never greater in
' v

' magnitude than some constant -k, k > 0, then
vV £ —kV , {11-G.2)

and by integration

o —k(t—to)
V(xp,t) < Vixg,t) ‘ (I1-G.3)
- - =]
If it is known that
v < -alllx| D |
and 1i'zf_b(llggpll) _ (11-G.4)
then k is simply
g = min a(lliPll)
2 vlixlD (II-G.5)

Such ‘a k value vields a lower bound on the speed of response. Known
results in this direction, however, are rare [17,18].
As an application of this technique, consider the Winsor and Roy

Lyapunov function [5],
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n n
v= Y ¥ L aiy
i=1 j=1 %i4

By appropropriate choice of the adaptive gains,

V=el(AgQ + QA e (11-6.6)

frdm wﬁich

1
(o]
o

n v

o} Il n
1
el s 2 X Loa2+ 3 §1.B_.l.j_bij2

1

[,
i
[
[N
]
Ja
Q
]
e
[N
]
[
[

(I11-G.7)

where
-C = TQ + QA
Am n’

If information on upper and lower bounds of the excursions of the model
and plant parameters is known a priori, then bounds on the last two
terms in the denominator of (II-G.6) can be obtained. In general, such
information will not be available, in which care approximations are
needed. An estimate of the transient behavior of the error using [5]
will now be performed in order to illustrate the difficulty of using
the procedure.

(II-G.?7) is in the form
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3 A, B,C>o0 ’ (II-G.8)
A+ B+ C
where
3 < L+l+1
A+B+C A B C
or
-1 < 1/3+1/3+1/3 (1I-G.9)
A+B+C A B C

2
Using (II-G.9) on (II-G.7) (| |_.3||Q = 1, C defined in (II-3.C))

* l 2
vz f1/3 [lmin (cQ ) -1/3 SIEJJC N
' n n
I I g aljZ
i=1 j=1 aij
2 .
-1/3 | |E| Ig v _ (11-G.10)
n n 2
I I 1 by
i - =— 13
i=1 j_l Bij
Defining
2
k, = max llEJ[c
n n
1 2
ho "1 (1I-G.11)
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el |2

k2 = max 1 C
n n 1 2

i=1 j=1 Bij

'The difficulty wiﬁh using (II-G.10) is that kl and ky of (II-G,11)
require a knowledge of the error e, and unknown quantity. As an estimate
of Ehe erfor decay rate, it might be possible to disregard the parameter
misalignments aj5s bij and only be concerned with Amin (Cth). However,
results would be only approximate and would need to be interpreted with

" care. Under certain conditions,

then

-

2| -1/3 Xmin (CQ‘l)] v (IT-G.12)

In the cases of [6] and [7], no results thus far are available
using the Lyapunov function decay rate approach. This is because in
both methods, the ratios‘i are complicated functions of the error and

v

thus far no reasonable approximations have been found to simplify the

resulting ratios as was done in (II-G.6) to (II-G.12).



‘III. DETERMINATION OF STABILITY CRITERIA
PROVIDED BY LYAPUNOV THEORY

The adaptive gains given in Chapter II were derived uéing-Lyapunov
. theory, Using this method sufficient conditions for asymptotic stability
of the erfor were cobtained. Unfortunately, one of the shortcomings
of the Lyapunov design approach is that sufficient but not necessary
conditions result, making it possible to "overdegign" a system. Dis-
cussed in this chapter are various techniques for simple determination
of elements of the Q matrix such that asymptotic stability is assured.
Also a method is proposed to relax the Lyapunov sufficiency conditions
on the Q matrix and still have an asymptotically stable adaptive system

error.

A. Conventional Technique for Selection of the Q matrix

In conventional Lyapunov-designed MRAS controel theory, it is
necessary for the designer to select, a priori, a p.d. @ matrix such
that AmTQ +Qp, is n.d. 1In practice determination of such a Q matrix
is difficult. In Chapter II, methods for relating the adaptive error
response to the selection of the { elements were presented, however it
was still necessary to insure independently that AmTQ + QAm was indeed
n.d. It has been shown [15] that if C is a p.d. matrix, for a given

Ay, matrix there exists a p.d. @ matrix such that

AmTQ + QAp = C (III-1.A)

62
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However, as will be discussed later in this chapter, the converse is
not necessarily true.

By selecting a C matrix at random it is possible to obtain a Q
matrix satisfying the Lyapunov stability conditions for MRAS controllers.
In most published reports this is the technique uged. However, as has
been clearly demonstrated in Chapter 1I, selection of certain elements
of the Q@ matrix is desired first. Other sections of this chapter will
investigate the problem of finding acceptable bounds on the elements
of the Q matrix such that easy use of the:ﬁesign processes discussed

is insured.
B. An Extended Stability Bounding Criteria

In Chapter 11, the particular V function used for deriving the
adaptive gains is given by (II-10.A) and the resulting V functiom by

(II-13.A), repeated here for easy reference:

2
“ n n n
v=elaTo+0a)e -2 X B > ek dki%p
i=1 j=1 k=1 ]
n T 4] 2
-2 Z E 51:} 2 e dkiYy (I1I1I-1.B)
i=1 j=1 k=1

L

. N . T
Since it is required that Ay Q + QAp be negative definite, and 6ij’Bij > 0,

then it can be seen that V is n.d. This V is the most general one and
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iz applicable to the case of the Boland and Sutherlin as well as the
Gilbart, Monopoli, and Price methods. By combining terms (:) and (:)

of ﬁ it 1s possible, under certain conditions, t6 relax the requirement
that AmTQ + QAm is n.d. By relaxing this requirement it is possible

to obtain a wider choice of qij values. In te?ms of the linearized

error equation design method, this meané that a larger "stability region"
for compensating zero placément is possible and still insure asymptotic
stability of the system error.

There are five major restrictions involved in the following

procedure

1. Am is in phase variable form
2. At least one non-zero input is present

3. There is at least one time-varying numerator gain term, ie

Gy(s) = S+ra o o * o time varying
Ap(s) A, (s) or unknown

4. The Gilbart, Monopoli, and Price/or Boland and Sutherlin
type adaptive controller is used

5. By contains all zero entries except for the nth row

Under these conditions, term (:> of (III-1.B) may be written as

‘ . 2
@ = 2 {[&Snl (elqln + €54, +... + enqnn)ul]
2
+5n2 [(elqln + Ezqzn + v+ enqnn)uz + ...

2
+5nr[}91QIn texqyy t ... F enqnn)uf] } (III-2.B)
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which reduces to
2 2 2
=2 |8p1Up + SpoUp + ... + 84 Upfle1q1n + €2q2q
2

The squafed factor in (III-3.B.) may be expanded as follows:

(e191n + e2dpn + ... #+ endnn’ (191 + €2q2p + ... + eqqy,) =

2 2
€1 91n" + 2e1e291n92n t+ 2e1€391n93n + - .-

2 2
t 2e1e4q109nn * €2 925 Tt 2epe3dp,d3, t 2epe4q29y

‘ 2 2
t ...+ 2egepdppGpny t e Foul F e, 9nn
which may be put in matrix form as .

2
Un 91n92n A p93q **- 910900

& 192n%4 924 Unb3n 9Un%n | &

- 2 (I11-4.B)

9hn91n 9n92n In3n = 9nn

Defining

2 2
Q= Z(Gnlnl + 6n2U2 + ... & L] )
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and

]
Un
q2n

qnn

(IIT -3.B) may be written in the compact form

e’ (g 4) e (II1-5.B)

Using (I1I-5.B), (III-1.B) may be rewritten

. T . T A A
V=c'a o+ 0a)e - % (@ e

n Tl n 2
-2 2 2 [E equixpj:l

i=1 j=1 [k=1

which finally simplifies to

o dwes B B[R e,
V=¢ge (We -2 e,q, X (I11-6.B)
i=1 j=l[=1 kkiTpy -

where

A A

W= ATQ + QA,-0q g

ijs a n.d. matrix. Under the constraint of the five conditions mentioned
earlier, (I1I1I-6.B) may be used as a criterion for insuring asymptotic

stability of the adaptation error. Using (II1-6.B), the condition

T _
ATQ + QA = =C
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is relaxed and replaced with the overall condition
T ~ T
AL Q+0QA -0 qg=-C (II1-7.B)

Using (I1I-7.B) allows a wider choice of qij values. When compared
with the design procedure in Chapter II, (III~7.B) allows the choice
of qij values to more closely mateh with values allowed by linear
systems ( i.e. root locus) theory. The reason that the allowable
regions for the zeroces of (II-16.B) may not be as wide as those allowed
by linear methods is as has been mentioned previously, namely that
sufficient but not necessary conditions are oﬁtained from Lyapunov
theory. By using the fixed criteria that AmTQ + QAm = ~C, C p.d., the
capability of using other information from the Lyapunov V function is
ignored. (III-6.B) allows for a varying stability criterion which
accounts for additional stability information when inputs are present.
This amounts to a coupling effect between the choice of the Q elements
and knowledge of the range of values of inputs present. Instead of
fixing the zerces of (II-16.B) using p = 1 and then adding additional
zero compensators due to the type (p = 2, 3) of system, a whole new
set of zeroes all together may be determined.
Some of the benefité of employing this extended stability criterion
include
(1) allows a wider choice of response characteristic
of the adaptive error
(2) the calculations involved are straightfoward and

involve merely an extension of previously stated
Lyapunov design techniques
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(3) asymptotic stability of the error is guaranteed

The shortcoming of this method is that knowledge of the range of values
of those inputs which pass through adapted feedfoward gains (i.e. inputs

corresponding to terms of B in i_= Ax + BU which are adapted. However,

in many practical cases, such a range is available.

Example

Gm(s) = 2 H Am(s) = 52+2s+2
82+25+42

GP(S) = |
s%+25+2 (III-8.B)

Using (II-16.B) with p = 1 (in order to obtain the stability limits),

the error characteristic equation becomes

1+ Rsta) .9 (I11-9.B)

3(32+25+2)

where

a = Q9y
qz7

02' . 02
K= qplegyxy ~ +v9U0; )

With the center of gravity of the locl of the roots of (II-9.B) at the

origin in the s-plane, the zero compensator denoted by "a" can not be
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any further to the left of the origin on the real axis than two
(this will be shown to be true by two independent methods in the next
section). Since (from a knowledge of linear systems) it is desired
to have the real root as for out in the L.H. s-plane as possible, a = 2
is chosen. - Using p = 2 (the Gilbart, Monopoli, and Price method) as the
control scheme, a second zero at s = -4 is selected. This results in

the root locus expression

+ Koqp, (8+2) (s+4) )

1 = 0 (III-10.B)
s (s2425+2)
where
K, = (521xl;2 + 621022)
U2/qy, = 2 K1/ky = 4-

Using the stability extension scheme, it is only necessary for

(ITI-7.B) to be negative definite. Expanding Qﬁ_ﬁ? —AmTQ -QA, = p.d.

2
function, for the second order case, Am(s) = g - azzms - 321ms,

- 0 i
o? |912 972922 41 |11 a7
26U
1
2 1 m
922912 U0 422 11412 922
991 94] |0 1
- >0  (p.d.)
™ " (111-11.B)
92 Q2] 1221 222 '

which can be rewritten as
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>0 (II1-12.B)

where
2 2
_ 0 _ m
A= 28,01 a35 - 2992y
B = 2§ U°2 — 2y = Anodyn -
= 20320 22 T 321 Y922 T 822 932 T 413
C= 26 U9%q. % - 2q.. -2 m
T %1271 922 T Sz T 922922
If
(1) A>0
2

(2) AC-B" >0

then V will be negative definite. In order to use (III-12.B), select
a desired (q12/q ) ratio (preferably larger than that allowed by the
22
T . ‘
Am Q+ QAm = —-C requirement). Select q22 so as to set the root locus
gain (= K2q22) and this then fixes qu; then determine if there exists

> 0 value such that (2) above is met. If such a 4, exists, then

44y
the q12/ ratio may be used. TIf none can be found, a smallef ratio
erq
122
of q should be chosen and the procedure repeated.
12/ay,

Selecting Qy5 = 4, q22 =1

{1} is met

(2) Ac - BZ = 156 - (50 - qll)2 > 0

if qp9 > 37.52
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40 4
< Q= and
4 1
~16 30
ATo+qa = is not n.d., but (III-7.B) is
n " 30 4

Interpretation of results for higher order systems is more complex

than for a second order case, but the basic procedure is the same.
C. An Exact Stability Bounding Technique Employing An Algebraic Equation

As has been emphasized previousiy, one of the shortcomings of
Lyapunov-designed controllers is the "overdesign" capability. This
comes from the sufficiency conditions of the Lyapunov theorems. Using
(ITI-1.A), where it is desired that C and Q@ be p.d. n X n matrixes, a
technique will now be given for obtaining numerical bounds on the elements
of the Q matrix. This is important because, for any other than a second~-
order system, the relationship between the qij elements is very difficult
to determine analytically because of the complex relationships relating
negative and positive definiteness. As an example, consider the case

of n = 3,
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To be positive definite, the conditions on Q are

q
11 2

3199 Y39 > 0

( -q,..9q. ) >

) _
- - +
q, . ( Y =q_.{q_.g q,..4,.) 9,95 T95,9 5

119229337923 124912%3 T923%137 T Y13

Simultaneously, the expression (Am?q + QAm) must be n.d., requiring an
equally complex group of relationships. Fortunately, from a Lemma due
to Kalman [15], if C is p.d. then there exists a p.d. Q matrix if Am

is a stable matrix. To obtain all combinations of Q, C would have to be

ranged through all possible values.

That the converse to Kalman's Lemma is not necessarily true, and
the reason for the algebraic methed to be given, is easily seen by a

counterexample. Using

and (III-1.A), it is clear that

6 13

10 21 | '

which is not p.d.

Returning to Chapter II, the basic error characteristic equaticn

(I1-16.B) involves the qij_ratios {(p = 1),
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-1 -2
K(sn + q(n—l)n/ sn + ... + an/ s + qln/ )
Ann 9nn 9nn
1+ =0
sh_(s)
n (1T1-1.C)
where K = qnnKl qij = elements of Q n = system order
By knowing the combination of qij/ values possible, an adaptive
9nn
system design can be effected,
Using
r2c A
T 11
Ap @+ QAp = ¢
2c22.
' (111-2.0)
2¢
¢ nn

a technique is developed in Appendix A for computing Q given C by an
algebraic technique. The C matrix in (III-2.C) overconstrains the
problem inasmuch as it is possible for many of the zero terms of (ITI-2.C)
to be non-zerc and still guarantee that the right hand side of (III-2.C)
is n.d., but the particular form given simplifies the analytical deriva-
tion considerably and then allows for a straightforward computational
technique.

As shown in Appendix A, (III-2.C) may be expanded into n(nt+l)

2
independent equations in the n(n+l) qij variables of the form
2
n (n-i+l1)
D a,, q.. = f_,
ts I A T B B
where aij’ fijare constants qij elements of Q

which can be generalized into the algebraic matrix form

Ax-=

(L=

(II1-3.C)
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where

_n(ntl) 4 nlntl)
2 2

X = [%11 q12 oo qlnq22q23 N q2n e qnn]

constant matrix

T

n{n+l) x1 vector
2

b - Eigill- x1 vector of o's and cy4's

(III-3.C) defines a set of n(ntl) linearly independent equations 80
2

1

|A|# o and A™" is guaranteed to exist. Solving

x = A'lg = flcyy) (I11-4.C)

by iteratively "sweeping" through the ranges of values of the c;, from
ot to =~ it is possible to obtain numerical data on the range of values
of an/qnn which, through (III-1.C) have been shown to help determine
the zero compensator locations. For the general case, numerical solutions
instead of general analytical results are much easier to find, althoﬁgh
for low-order problems general results may be found.

The "sweeping" of thé ¢;; is performed as follows:

Let €y be a small positive number and 2cii the diagonal elements
of C, Initially let Cjq T8 7€ and then iteratively increase Con to
gome arbitrarily large value cp.,, then increment c(p-1)(n-1) and sweep

through all cnn's. This could be performed by a sequence of nested DO

loops of the form
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DO 10 I = 1, MAXCOUNT
DO 10 J = 1, MAXCOUNT
DO 10 K = 1, MAXCOUNT

10 CONTINUE.

It is possible, for n=2, to obtain exact analytical results
relating the cii and Am elements to the qij/q ratios, as will be
pointed out in a later section of this chapter. However, for the
general case, the analytical computations involved are unwieldly, and
are best by numerical methods.

A computer preogram, QRANGE, has been written to numerically obtain
allowable root location combinations so that the dynamic error response
can be easily designed. The program is made up of a series of sub-
routines which order the data so that a series of root=locus like curves
are plotted by the computer showlng the location of variation of each
of (N-1) roots, where N is the system order. This is accomplished
by using a subroutine titled ARRAYR to order the roots in groups of
{N-1) from largest to smallest (most positive to most negative) and
then plotting all first terms, second terms, etc. of each group together.
To see this, consider that there are a2 large number of groups eof (N-1)

data points, each group of which is arrayed largest to smallest:
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Group of -. -1 7 [~.1
N-1 terms -. retrieve -1.7 order -1.3
: -2.3 D S I D Plot
. — ~>

X -1.3 :
-1.7 ) _12.2

(N"‘l) -1. 9+j 6 - .
-1.9-36 -12.2

(N-1)Y |-76.

r-12.2
@w-Df | -13.3+52
) | -13.3-11
h »

Figure III-1.C. Root Ordering By Groups.

This operation is performed repeatedly until (N-1) sets of roots have

been plotted. Then allisting of all groups of coefficients, fhe groups
‘ordered so the first term of group 1 > first term of group 2 > first
term of group 3.-...., is given.

1t is felt.that by displaying a representative sample of root
loéations that guarantee asymptotic'adaptive error staﬁility, the
designer can maﬁe,a judicious choice of some root combination which is
close to what he desires. Overall error transient response can then
be improved beyond this by using the methods in [7,11].

A brief Qiscussion of the special form of the C matrix used is in
order. For the Q-ratio determination technique presented, it has been

assumed that the C matrix is a diagonal of positive numbers with all
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off diagonal elements zeko.' This is a sufficient but not necessary
condition for C to be p.d. However, the alternative is that, to cover
all combinations of the C elements for which C is p.d., all off diagonal
élements must be swept through their ranges of values. This would
require complete knowledge of all the non-linear relationships guaran-
teeing C be p.d. a situation that is difficult for low (i.e. 2nd) order
systems and completely unwieldly for higher (i.e. > 3) order systems.
Therefore, the range of values of the Q ratios obtained with the sweeping
techniques are a subset of a larger, unknown set. This is not of any
real consequence because it simply means the designer is forced to select
his zero compensators from a smaller choice set. Whatever combination

he does choose will insure an asymptotically stable error response.

A second point to consider is that of sensitivity of the delta
increments used in sweeping the c;q terms through in a priori fixed
range of values. By using discrete step increments the possibility of
"missing" that particular (unknown) combination of ¢;; values where the
chahges in Q-ratio roots is largest may occur. This is where a bit of
insight on the part of the designer is needed. A first "guess-run" can
be performed using estimatedrlimits on the Ci4 and a delta value to give
a reasonable number of data points. After a cursory examination of the
preliminary data a second run with appropriately modified data could
be determined.

Such a computer design program 1s ideal for use on an on-line,

time-sharing computer terminal system. In a relatively short time the
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designer has a writtén and graphical record of results which he can later
use in a full design study.

Shown in Figure III-2.C. is a flowchart of the program QRANGE, a
copy of which is availabié froﬁ the Auburn University Electrical Engineer-
ing Department. 'This main progrém tiés in withia number of subroutines.
QRANGE, the main-control program uses MATINV to obtain A_l from A as in
(I11-2.C) and(III-3.C),then obtains feasible qij/qnn ratios using MMUL. -
These coefficients are then transferred to PROOT where all of the (N-1)
roots. of the numerator expfessiOn in (I11-1.C) are obtained. These
roots are stored in two large arrays, for real and imaginary root parts.
RTORDR arrays the roots im groups of (N-1) terms, from largest to smallest
{smallest negative real part to 1arges£ negative real part). Using ARRAY,
the jth (j=1,2,...N=1) term of each of these groups 1s retrieved and
plotted, real part vs. imaginary, using SPLIT. Wheﬁ all groupings of
each of the (N-1) roots of the gij/qnn ratios have been plotted, the
entire set of data points 1is plotted.
D. Kleinman's Iterative Method For Determination of Bounds on Q Matrix

Elements
As discussed in Chapter IV of the Third Technical Report, Kleinman's

Iterative method [19] includes a subroutine that is a numerical technique

for solving the equation

Ap'Q+ Qay = <C

for Q, given A and C. This is an iterative method whose results compare
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2
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%
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Array Data Pointa
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!

Plot and Print All Roots
(SPLIT)

III-2.C. Flowchart of QRANGE
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with the method discussed in section C. By using this method in a loop
and varying the C matrix a range of values on the Q matrix elements can
be obtained. These results then help the designer &efine regions in
the s-plane where_zero compensators of the error characteristic
equation in Chapter IL méy be placed.

Whereas the other numerical methods discussed thus far were exact,
the Kleinman iterative method sgpplies answers which are only accurate
to within some tolerance. Therefore, any zero compensator placement
baae& on results from this technidue would have to be verified to insure
that Q was p.d. and that AmTQ + QA.In was n.d. However, this need not
negate the use of this method, for it would be expected that only near
the boundary of a stability region would the approximate iterative results
differ from exact results.

Computationally, it solves
ATQ+ QA +Cc=0
m m

by starting with an a priori input initial guess and then iteratively
homing in on Q to withim a tolerance. The tolerance is based on the

requirement that

(k+1)

< TOL 1= i

qij

st
where {(k+1) is the (k+1) iteration. In this way TOL represents a per

cent error (0 < TOL < 1). However, if it is desired to insure that all
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elements meet precisely the TOL requriement, the program in [19] may
be easily altered to check all the elements.
E. Comparison Between Stability Bounds Obtained From Lyapunov Theory
and Linear Methods
In actual design work with model-reference adaptive systems it is
necessary to use only those combinations of qij/q“n in (II-16.B) such
that the necessary stability conditions are maintained. However, the
Qhole purpose of the linearization technique performed in Chapter II
was to reduce all the Lyapunov stability considerations to classical
control techniques, especially root locus methods. It is therefore
instructive to compare stability predictions between linear methods and
the exact Lyapunov methods to see just how well the small-signal technigue
works as a design tool. Through some examples, then, it may be possible
to develop some ''rules of thumb'" for various order systems as to deter-
mining how one”céﬁjﬁe-a bit conservative on the stability bounds for

the rcots of

11
j=-1 -
q,. sJ =0 (I11-1.E)
j=l[jn ] |

as predicted by linear methods and still meet Lyapunov requirements.
The first example compares the two methods for the special case

n= 2.

Example 1.

Consider the general second-order case of
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) ‘ ‘
it ‘ (III-2.E)

G (s) =
m 2 2
s 2% wy, stwy,
_ 2 2
Am(s) = s5° + 2€wns + w

It is desired te find bounds on the zero '"-a" using (II-16.B) for the

case p=1, n=2 H

1 + k (s+a) =0 (III-3.E)
2 2
s(s™+2guwystuy ) )
A 1is
)
o} 1 0 1
2 m m
~Un “2tug|  fTay ~422
With
2
r:11 0
r €= €12 S22 > ©
4] 2c22

T .
solving A "Q + QAm = -C for the 94 element,

2 2
_c11(age™” + e11821™ + e22(a21™)

91 .
agy a2
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C

- 11
92 L
21
m
[d + Chna
q,, = L. 22721 (111-4.E)
22 m m
431 822

Defining a = q12/
d22

and substituting (III-4.E) results in

m
[ a
a= 11722 (I1I-5.E)
m
c11 t €p2321

Letting Ciq° c22 take on all values between 0+ and ®, note that "a

varies between 0 and azzm. For the second order example this is equive-

lant to
0 <a< 2w, (I1I-6.E)

It should be noted that (III-4.E) was obtained by taking the general

inverse of A in (III-3.C). Since A is of size n(n+l) x n(ntl), results
2 2

become unwieldly for 3rd (A is 6 x 6) and higher order system, and this

is when a numerical optimization is proposed.

Using Routh-Hurwitz methods, (ITII-3.E) becomes

s + 52(2cwn) + s(mn2 +k) +ka=20 (I1I-7.E)
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3 2
s 1 (wn + k) Q
52 2w, ka ' 0
1 2 (III-8.E)
s (Z;wn)(wn + k) =ka 0 0
ZCwn
s® | ka 0 0

In order for (I1I-7.E) to be stable for all k > 0, it is necessary that

a < 2;mn 1(111—9.E)

From a knowledge of linear systems analysis, (III-3.E} requires that

a > 0. Combining these two limits results in

Q< E_zcmn (I11-10.E)

T
which agrees with (III-6.E) obtained by the Am Q+ QAm = -C method.
In some sense this provides a check on the accuracy of the small signal

error equation with exact Lyapunov methods, for it shows that for m = 2,
results are identically the same.

A general third order problem will now be studied in order to com-
pare linear vs. Lyapunov stability region predictions. As might be
expected, results are much harder to interpret.

Assume the characteristic equation for n = 3 is

2 2y(s + p) © (I11-11.E)

Am(s) = (s° + 2§mns + W
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The linearized error equation from Chapter II is

2 ,q q |
q33K1(s + 23/q s + 13/ )

q
33 33
1 + =0 (IT11-12.%)
8 Am(s)
where
2
K = o
1 %31
m
Defining
3/, =d 923/q,, = ¢ (IT1-13.E)
934 33 .
(ITI-12.E) may be rewritten as
1 + Ki{s+ta)(s+b} = ¢ (ITI-14.E)
S Am(s)
with
_.c 2 _ 2
a= + c” - 4d b=1c¢=- c” — 4d (ITI-15.E)
2 2
and
+h) = -
(ath) = q,,, (ab) = q,5,
933 933
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(III-14.E) represents the linear characteristic equation to be used in

comparing stability prediction..

Using Lyapunov theory,

0 1 0
91 Y2 Y3
Q = qu q22 Q23 Am =10 0 1
m m
913  d23 133 a31 832 433
a ®<op
nj

m
0 0 a3 #1971 Y32 3] P10 Y12 Y3 [0
m
10 agy |19, 9y dp3f+|912 922 23]
0 1 " n
233 JL%3 %23 Y33) [Tz %23 3 Pam
11
=] o
0

(I1I-16.E)
1 0
0 1

m m

32 i3

0 0
—022 0
0 -c33
(III-17.E)

where a special form of C has been selected as discussed previously,

e.. > 0. Using (III-17.E), a set of n(n+l) equations in the
‘ 2

ii
variébles qij is obtained

n{atl)

2
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+ = -
31 13 T Y13 %31 7 T4

d31 993 ¥ 97 933 333 =0

+ + -0
331 Y33 T 95 T 934 843
- - (ITI-18.E)
Ay * 23 993 T 435 + Q3 835 = "€y
+a, + + =0
933 T 33y 933 7 99y T 94 835 T
Aoy t 835 A33 F dyg * 3553 435 T "C33
Selving for an j=1,2,3
933 © 7 “11
2331 2 .
S22 %33 7 %11 %33 7 33 %23 %33
_ + 431
q23 Cq4 ] N (11I-19.E)
P (agy + a3 a33)
Cp t €17 833 T €33 373
a3
133 7

2(agy + ayq 2g4)

2

Using the ratios q and the iy one can obtain combinations

IBIQ33 q23/q33

of 113/ » 423/ such that asymptotic stability of the error equation
933 433
is maintained, The roots of

2
57 + q s+ q
( 23/ 44 13/q33)

may then be obtained by using (III-15.E), and it is these roots which are

to be compared with the zero placement from linear methods.
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- 2 -
54(1) + SS(ZCwn+p) + sz(mn2+2§wnp+K) + 8w, pHK(ath) + Kab = 0

(2w +p)

(Zgwn+P)(wn2+2Cwnp+K) - wn2p+K(a+b)

(2twp+p)

(Zan+p)(mn2+2cmnp+K) - mn2p+K(a+b)

oo pHK(ath) - (Kab) (2gu_+p)

(2Cuw,+p)

2
(220 +p) (g +25w,pHK) — wy2p+K (a+b)

(ZCwn‘*‘P)

50 Kab

Elwnsp,a:b>°

2 .
(mn +2§mnp+K)

mn2p+K(a+b)

{Kab)}

(Kab)

Figure III-1,E. Routh Hurwitz Array for Third Order Gm(s).
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Using .(ITT1-12.E), the characteristic equation to be studied by

Routh-Hurwitz array is

2 2
s(stp) (s™+2zw_s+w_*) + K(s+a) (s+b) = 0
or
4 3 2, 2 2
s + 5 (2cu,+p) + s (o, +2tw,ptK} + s(uw,“p+KatKb) + Kab = 0
(I11-20.F)
The corresponding Routh~Hurwitz array is given in Figure III-1.E. From

column 1 of this figure it is necessary that all entries be positive in

order to insure stability, so

L,upsPsa,b > 0 (a)

(2z0_+p) (mn2+2a;mnp+i<) - (wn2p+Ka+Kb) > 0 (b)

K>0 (e)

2 Kab) (2cw + d

(wy p+KatKb) - ; 22) (2zuqtp) > s o @
(250 *p) (g “+2Tw,pHK) - (wp“pHRatkb)  (111-21.E)

Since §, w,, P are known, it is a, b and K which are wvariables to be
related. Since K must be greater than 0, (b)Y and (d) of (ITI-21.E) can

be combined as follows. From (b)

if 2zwntp > atb then K > 0

. 2 2
if 2cwn+p < a+b then X > 2zw,(w, +2zw,p+p )

a+b~2Cwn-p
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(d) is in the form of a quadratic in K, which can be seen by rewriting

it in the form

AK2 + BR + C > 0 _ (I1I-22.E)

where

b g
i

2 2
= 2cwna+2cwnb+aﬁ+bp—a -2ab-b

[s:]
fl

P (mn )(2;mn+p-(a+b))—ab +2%wn Zabpﬁmn (a+b)

+ 2;m“p(a+b)+P (atb)
2, 2 2
- C = 2zw, pw, (wn +2zw ptp ) -2Cw,ab

I1f either (a) the discriminant 32 - 4AC < 0 or (b) all roots of (I1I-22.E)
are negative then for K positive (IIT-22.E) is satisfied. Statement (a)

can be seen by considering f(K) versus K, where (III-22.E) can be written

as
A2 + BK+ C > 0 = £(K)  (I1I-23.E)

If 32 - 4AC < 0 then there are no real roots and (for A > 0 the parabolic
function has a minimum greater than zero. Statement (b) allows for
negative crossings of the K axis, such that for all K > 0, £(K) > 0.
Thié is illustrated in Figure III-2.E

"In order to xllustrate the types of stability bounds which can ﬁe
expected from Lyapunov techniques versus linear methods using (II-16. B)

a third order example will be given.
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Figure III-2.E-

Illustration of f{K) vs. K Requirement
for {ITI-23.F)
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Example:

) 6
s " DG+ DG+

Q and % of the form in (III-16.E)

k(s + a)(s + b) =0
s(s+ 1)(s + 2)(s + 3)

1+

is the error characteristic equation of interest. Using Routh Hurwitz
linear stabiliiy metﬂbdé, a region of a, b zero placement can be
determined. Using exact Lyapunov techniques, a stability region for
a, b placement was determined using QRANGE. Tﬁe results of both the
11gear and Lyapunov stability regions are shown in Figure III-3.E.
Some important points to note from Figure III-3.E are (1) as
expectéd, Lyapunov-obtained results are more conservative than from
the approximate linear methods, (2) the Lyapunov stablé-region is’
'clnsﬁered near the origin withlrespect to linear results, (3) no part
of the Lyapunov predicted region is outside th#t obtained from linear
methods, suggesting that the Lyapunov results are a subset of linear
results. In addition, it appears from both second and third ordef
examples that & "rule-of~thumb" might be that some fraction of the
lipear stgbility region would fit Lyapunov conditions. Results would
have to be interpreted carefully, however in order to inéure stability,

but as a starting point for compensating design the rule-of-thumb

might be used.






IV. PRACTICAL DIFFICULTIES IN IMPLEMENTING AN MRAS CONTROLLER

In Chapters II and III design criteria and stability analysis were
discussed and a number of examples given to illustrate implementation.
Up until now, the "ideal" case was assumed, i.e. no plant or input
noise, all plant states measurable and available for feedback. In most
practical situations one or more of these coﬁditions will be violated *
to sﬁme extentwand the purpose of this chapter is to study such effects
on the performance of an MRAS controller. Analytical results will bé
presented when possible and examples given to illustrate discussion

toplcs.
A. MRAS Controllers With Roise

Noise is an imprecise term which is often used in practice to
aécqunt for modeling uncertainties, undetermined environmental dis-
turbances, and linearization effects of non-linear system. Noise-
will be considered in this section in regard to its effect on sfability
of error in a model-reference control system.

In particular, a plant with input noise and state noise will be
studied. The state noise could conceivably represent the effects of

{a) electrical noise

(b) wvibration

(c) measurement transducer misalignment

9
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(d) random wind gusts

{e) bending moment effects on measurement transducers
Input noise could be represented by

(a) mechanical play in control guides and surfaces

{(b) electrical noise in drive signal due to induction pickup

(c) wind disturbances on control surfaces

Showm in Figure IV-1.A is a diagram of the plant of an MRAS
coﬁtroller subjecﬁed to input noise v(t) and state noise n(t). Using
Lyapunov theory and the Lyapunov functions in [5, 6, 7] an analytical
description of an upper bound on the norm of the error in steady-state
will be found. Asymptotic stability no longer has meaning wﬁen noise
is present; instead bounded stability is of concern. The dynamics
given in Figure IV-1.A will now be discussed.

The disturbance inputs are

vo=0(t) v+Aa(t) g 'g_(t) _{f_(-)‘& (input) - (Iv-1.4)

it

A=T() n+ ¥@E) w w(t) = £(+) 0 (state)

where

£+ ¥ are nth order gauasian-white uncorrelated processes
with zero mean

v(t), n{t) are correlated noises

f(+) is a saturation function which clamps at the *3c values
of the appropriate gaussian input

The plant dynamics are



{wm

aley

a(t)

Figure IV-1.A. Adaptive Controller With Stochastic Input and State Nolse Present.
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£, = A (0) x, + K(D) [59 + _T_]_(t)] +B,(0) [3 + y_(t)] (IV-2.4)

where

x5 1s an nXl state vector

r is an rXl input vector

K(t) is the adaptive gain matrix

Ap(t), Bp(t) are nXn and nXr unadapted state and input matrices
Defining

~

Ep(t) =% + n(t) (Iv-3.4)

u(t) = x(t) + v(t)

~

EP’.E(t) represent the avallable plant information. Substituting

(IV-3.A) into (IV-2.A) results in

Xy = Ap(E) x + (1) gp(t) + B,(t) u(t) (IV-4.4)

which is similar to (II-1.A) except that now the internal feedback
A(L) X, is separated from the external, physically available K(t) fp(t)
which is corrupted by noise n(t). Since a control law must be

implemented with available state information, a new error variable

~

e=xy - x,(t) (IV-5.4)

is defined. Since the noises cannot be controlled but only identified

by their statistical properties, the effects of them on the MRAS
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controller performance are important considerations. In Appendix ¢

is developed an analytical expression for determining the error bounds

as a function of the input and state noise statistics, and certain

adaptive gain parameters. Two such indeﬁendent studies have been

performed in recent times [9, 10].

Using the V function given in Chapter II, V is determined in

Appendix E for the case of additive noise. The results are that V

is p.d. but V is indefinite,

n.d.

n n n
. AT T ) " n -~ 2
Vee' (ALQ+Qa) e-220 X By 2 ekigiXp;
" " i AR B =S M S
-2 8 2: ey, qp U, +2eQ|An - N - B
i ki e n-n v
=1 3=1 315y B o= m=

IV-6.A)

If the noises were not present, then V would revert to a function

in e. For the case of noise assuming that v, n, and n are

bounded, the last term of (IV-6.A) can be written as

Defining

2||Ap1* no- Bl osT (IV-7.A)
2
N . LI 1
=& (ApQ+QA) e-23 3 8;5 2 &q %
=1 j=1 k=1 k'ki pj
2
23 T n
—22 Z Gij Z equiuj (IV-S.A)

i=1 j=l k=1
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and using (IV-7.A),

V< + el ollr (IV-9.4)

since the second term of (IV-9.A) is equal to or more positive than the
last term of (IV-6.A). Using a procedure outlined in [9] an upper

bound on the norm of the error is found to be

N A(Q)
[fel] > max I =p (IV-10.4)

A(-AL Q- QAg) oo

where

A(Q)max is the maximum eigenvalue of Q

is the minimum eigenvalue of (—Ai Q + QAp)

T
A('Am Q- QAm)min

I' is defined in (IV-7.A)

p = radius of convergence of n-dimensional hypersphere in
Efspace.

(IV-10.A) says that as long as the norm of the noisy error, |[é]|, is
greater than the analytically derived number p, then V will be n.d. in
e and the MRAS controller will guarantee bounded stability to at least
an error region with norm p. It could be that the norm of the error is
considerably smaller, and in fact may approach zero, but no concrete
Statements can be made for IIéJ] < p.

Using

e=e-q (IV-11.4)
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an upper bound on the norm of the error g,
e = - X
ET & T

can be found,

lell < 1lell + [lafl_ (IV-12.A)
llell <p+ linllgax =8 (IV-13.4)

(IV-13.A) gives an upper bound on the "steady-state" error, i.e. what is
the smallest difference between plant and model states in the presence of
noise. This is illustrated graphically in Figure IV-2(a,b,c).A., 1In (a)
C is a typical phase plane trajectory. As long as C is outside the circle
with radius p, then V is p.d., V is n.d. and the error continues to
decrease. It may be, as shown in (b) that C may enter the circular
region of radius p; it is simply that in genefal, using (IV-10.A), nothing
more than bounded stability with 1[éj] < p can be made. {c) shows
how (IV-10.4A) provides_an‘error band on tﬁe state E?(t)' This is
similar to the *lo limits used to describe probability accuracy bands
for various states for systems corrupted by Gaussian noises, except
that the error bands shown in dotted lines give the best 'steady-state”
tracking results which can be expected between the model and plant
after a plant disturbance has occurred.

The error region given by (IV-13.A) will represent an upper 1iﬁit

for the worst-case conditicn. In general, the actual errors involved

would most likely be much less. The form of the error bound in (IV-13.A)



€2
C
8
\‘ |
(a)
e
2 C
/ s
/ el
\\Eﬂ
(b) Plant trajectory

t Time {c)

Figure IV-2.A (a) Error Trajectory C showing circular region of conver-
gence predicted by (IV-10.A)}. (b) trajectory € may enter circle of radius
s (e} how p enters the physical problem by providing error bounds on xl(t).
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leaves much room for iInterpretation of its meaning. This is because the
error bound is on the norm of the total error vector, not an error
bound on any individual error state. Consequently, an inexact procedure
of weighting the errors, based on simulation or other external infor-
mation, might need to be used to obtain an estimate of the. proportion of

the normed error bound due to any one state error.

Example:

Third order system in phase variable form corrupted by noise

From a priori infoxrmation, it is kmown that the errors are

apportioned approximately on the basis

21
€ = 3 ®norm
e, = L e
2 3 “norm
e3 =

From design information it is known that

MQ),, = 1

Il
E-8

T
NC-Ay Q- QA

I‘ = .4
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Ny .3
max
Qmax = "2 .. |7 41~ llnl |ma.x =3
rl3 0
max

Using (IV-10.A) and (IV-13.A)

el =42 ¢ 4 ((5) = 6 = enorm
Elmax = +,2
ezmax = +.4

This shows that an indeterminacy band of +2 could be expected in e; and

*.4 in ey as shown in Figure IV-3.A.

1.2 § '
1.0 - /
+ - %,
nominal
.8 J .2

.6
N +
* .4 “AN ~
L od i \
| 2 | \h \ \ \
0.0_| e TN N TN \ \ i
¢ e~
T
IR \
BX— nominal
LR \ h

Figure IV-3.A. State Indeterminacy Due To Noise
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Because the error bound with noise 1is given in terms of matrix
related values; i.e. eigenvalues, no general ;elationship exists at
present between. a particular choice of a Q matrix for a given model
and the resulting upper error bound given by (IV-10.A) and (IV-13.A).
It is of course true that the largest eigenvalue of Q is a function
of the magnitude of the elements of Q, but using small qij values to
minimize A(Q)p.x in no way insures that A(-Ai Q - QAm)min is large; it
is the ratioc which counts, not an individual term.

Although no general nth order relatioﬁship exists for relating the
choice of the Q elements:to the resulting A(Q)max and A(—A$ Q- QAm)min

values, exact results for a 2nd order case can be developed and will

now be outlined.

Consider the general 2nd order model

A = ol with Q =
31 3 1921 9

azT, azg < 0 for a stable model. It is desired to determine a relation-

ship for expressing the ratio

A
B (IV-14.4)

A(-A7 Q - QAy)

as a function of model parameters and the adjustable qij elements.

~ To determine the eigenvalues of Q,

A-q ~-q
11
[A1-g) = e (IV-15.A)

“d1p . Ay,
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which reduces to the characteristic equation

2

2.

which has roots

2 2
sy - (497 + ag2) # \/(qu + d99)" - 4(a119 - 9;7)
1’ "2 7 2

(IV-16.4)

DPividing and multiplying by qp2, (IV-16.A) can be put in the form

q
A Ag = -22-3 (1 +b) * -\/(1 - )2 4 422 (IV<17.4)
where
q
a = 22 = zero compensator location as given in (II-16.B)
922
q
p = 21
922

For Q to be p.d., both roots of (IV-17.A) must be positive, so the

1limiting case is for X = 0, or
min
= 2 2
(1 +0b) = (1 -1 + 4a (IV-18.4)
which reduces to
_ .2
b = a“, (IV-19.A)

In general,
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b > a’ (1V-20. A)

) T
Similarly, for (A, Q + Q4 ),

(24,277 (agpa,7 + dy71 + dy289;)
AL Q+Qa =
(4903,7 + dg1 F 935357 20a;, + q,,3),)
(IV-21.4)

with the relatiom

T - -
AL Q+ QA C

where C is p.d., the eigenvalues of C are

m m m
(A + 2q752)7) (ay53,7 + dy9 F a9535,)
Iar-ci =
m 1 m
(455397 + 977 * 99,322 A+ 2(q), + q9p5357)
(IV-22.4)

from which the characteristic equation is

2 m m 2 m m n
. ,
Ao+ 22qy, *+ 205,58y, + 2q,,2,) *'quzazl t 441995735135,

- (q,,2,. + - a2 =0
%21 * Y11 T 912%22) | T (1V-23.4)

Solving for the roots of (IV-23.A) and rearranging terms,
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m

_ _ m m my 2
Az = 4y, (a + 3y9 + aazl) * j\/(a + a5, + 3321)

m

B\
29 (azT + b+ aazg)z] (IV-24.4)

- {Aazazf + 4aa2Ta

Both (IV-17.A) and (IV-24.A) are similar in that the roots are a
function of constants and ratio of qij elements, and the magnitude

of 9pp¢ It is the numer%cal value of 9,9, then, that determines both
sets of roots, given that an a and b have been picked.

From (IV-17.A),

@, = 2 a4+ “\/(1 - b)% 4+ 4a (1V-25.4)

and from (IV~24.A)

r

T m
A(—Ani Q - QAm)min = 49 {-(a + ay, + aaz?) -

LN |

m m, 2 2 m m m
—\/Qa + 3y, + aa21) - [Aa a21 + 4aa21a22 -

-
m 2
(azl + b + aazg) ] } (IV-26.4)
From (IV-25.A) and (IV-26.A), the desired ratio

A (Q) max

T
M-A_ Q- QA

min

can now be formed,
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A .
‘D na =[(l+b)+ U(l—b)2+4a2]
T
MeAp Q- QAD) . {_(3 +a,n+aa)) +

m m 2 _ 2. m m_m _ m 2]‘
:\/(a + a5, + aa21) [4a a5y + 43&21322 (321 +b + aaE;) }

(IV-27.4)

For a given mecdel, the ratioe

AQ)
max

T
l(-Am Q - QAm?

may be plotted as a function of a with b as a parameter. Since for the
case of the model in phase-varijable form no information about qqq is

available, in practice only a single curve with b = ¢, ¢ > 0 is needed.

th srder gystem between

Lacking a general relationship for an n
the selection of the Q matrix and the error norm bound does not mean
that nothing can be done. Using (IV-10.A) and (IV-13.A) for a particular
choice of Q will supply a bound on the indeterminacy due to noisy states
and inputs. If this bound 1s sufficiently small with respect to the
range of values of states expected, then the given Q values should be
sufficient. If not, a brief "trial-and-error' study of adjusting
the Q matrix and determining the error bound from (IV-13.A) may provide

an empirical relationship which may be used to home in on an acceptable

Q matrix.
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Example: ¢

Given the 2nd order model

2
(s +1) (s +2)

Gm(s) = {IV-28.A)
It is desired to determine the Q matrix in order to implement the

adaptive gains for the plant

6, (s) = 2 (IV-29.4)

sz + azgs + azg

Assuming there are large nolses on the iInput and state measurements, a
trade-off between the error transient response, as discussed in Chapter
IT, and the noise-present system, discussed in Chapter IV, is necessary.

Placing the model in phase-variable form

A =  (IV-30.4)

it is desired to determine

q11 912

932 492

Using analysis and design procedures from Chapter 1I, the noise-free

error transient response is determined by (using [6])

1+ 8t3a) (s+4d)
s(s2 + 3s + 2)

= 0 (IV‘31.A)
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where

k= 9,k
q

Ao 12
Y
K

d=_L
K,

and
0<a«<3

Based on a noise-present design, given that the noise cannot be reduced
it is important to minimize the effects of the noise. From (IV-10.4)

and (IV-13.A), by minimizing the ratio

A (Q)
max (IV-32.A)

M(-AL Q - Qay)

min

the controllable effects of noise on the plant are optimized. Using
(IV-27.A) with b as a parameter, Figure IV-4.A shows the relationship
between (IV-32.A) anﬂ the choice of "a'". As 1s evident from Figure
IV-4.4, a trade—off between the desire for a large "a" for good transient
response versus a small multiplier ratio as given in (IV-32,A). As

a compromise, '"a" = 1.5 was chosen. This results in the error root

locus given in Figure IV-5.A.
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T
A (~Am @ - Qap)
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8.0

3.0

7.0 a =

Figure IV-4.A.
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-
-
w1

a -+
Relationship between l(Q)max and "a" with "p"

as a parameter.
A (-ApTQ ~QAL)
min
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Jw

+ 100(s + 3/1)(s_+ 150/100) _ 4

1
g(s + 1)(s + 2)

Figure IV-5.A Error Root Locus For Example With Stochastic Noise.
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In Figure IV-6.A are shown the results for two runs with different
noise combinations and these in turn are compared with a deterministic
run. Using (IV-13.A) ||el] = .4 assuming the error contributions are
equal between ey and ez,‘the maximum error (el) should be less than
.283, or about 5.6%. The actual results show the steady-state errors
in two cases to be less than .025 with an input of 5u(t). The noises
were correllated by passing Gaussian white signals through magnitude
limited *3c, low-pass filters with 10 Hz bandwidths, where bandwidth is
defined here to be the frequency range where |G| > —-60 db (gain of
1/1000). This stringent requirement on the definition of bandwidth was
chosen so that when some maximum value of the state noise rate, ﬁ, was
analytically determined then the resulting analytical bound would be
accurately reflected in the actual error bound. |ﬁilmax is determined by

Inilmax = 27 (Afi) |ni|max’ i-= 1, 2, esse N

where

Afi ~ bandwidth, Hz

|ni| - maximum value
max

As would be expected, the actual error bounds were much less than the

predicted omes.
B. Parametric Study of the Error Bound As a Function of the Noise Bounds

In this section, a form of sensitivity analysis will be performed in

order to obtain relationships between changes in peak values in the
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AJLv

Filter

' 6 ""'
Su(tl o 1 !
s
5 4
i)
Filter | __
4 - (KC21 - 1.9) €
2
s+ (3 - RC22) + (1.9 - KC21)
e~ 3+ KEY
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—
N .
. Deterministic
5 .
¥
=4
2 4+
10 Hz
Bandwidth
Noises
]_ -
i 1 . . |
T 1 T 4 ET
0 1 2 3 4 5
Time Actual Error Bound
= 0025

(Predicted = .4)

Figure IV-6. A. Adaptive Error Response With Stochastic Noise Present.
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noise states, détermined by the #30 limits, to the normed error bound

given in (IV-13.4),

| Q) _
el < (2|IAJ:1_—11- ol )
II A(-Ai Q- QA'm)min ° Bm_- nax
e lall (17-1.3)

where the various terms are described in section A. The interest in
this study comes from practical considerations wherein the noise
statistics, i.e. mean and standard deviation, are often directly related
to the type of hardware used in the controller. Such hardware would
include type of measurement transducer, transducer mounting integrity,
types of electrical shielding employed, amplifier linearities and drift
(if analog hardware employed), number of bits and D/A, A/D accuracy
(both time and magnitude) if digital implementatiocn is used in the
controller.

For purposes of this study, each noilse sourqe, either n; or vy may
be depicted by a bound on its peak value, whether it be plus or minus.
Thus if Ny has a mean of 2 and o of 1, its peak value could be con-
sidered to be 5 or -1, whichever maximizes (IV~1.B).

It is assumed that the Q matrix has been selected and is fixed and
only changes in the noise statistics are to be considered. Consequently

(IV-1.B) becomes

e = -
el lmax 1 t7y, (Iv-2.B)
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L Al
where

C = constant

vy = 21180 - n - Befl
¥2 = linllpax

= 2 2 2
||§._n[| = Jal +32 + ... a,

Since Ao is in phase variable form, Aoﬂ_is in the particular form

_ T
An = EQ, Ngs ves T g5 N] (IV-3.B)

where
N = (-a,ny —a _fy, »+» =31Mp)
A0 in the form of A in (II-15.B)

n is determined by the band-limited nature of the noise, i.e.

(1Iv-4.B)

where

foax = arbitrary frequency cut-off point

nim determined by mean and 3¢ limits
ax
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First, the case of no state noise, n = 0 will be investigated.

With this restrietion (IV-2.B) becomes
el . =2¢ [IBpll_ | (1v-5.B)

With B in the form of B given in (II-15.B),

LR

3
[ 1Bul] = Ja’n"l T hrgvy e Dypv) F (bygvy F byyv, +

b

£ 2 2
LI bzrvr) + . + (bnlvl + bnzvz + LI bnrvr)

(1V-6.B)

In order to determine the sensitivity of the error norm to any particular

noilse state, defining ]Igj[max = e,,rm® the incremental change in

®n

the error norm is found as follows

[l

3l lel | 3 lel]
denorn = |~ vy 4 —— DX By ..
av BV
1 2
3 el | pax "
Tmax (IV-7.B)

avr

where

n
C)I“,_l bij (byjgvy + bygvy + «ov + byov )

= = (IV-8.B)
ij _ b 2
1=1 ilvl + binZ . birvr)

3| lel|
max
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Auj - the incremental change in the peak value of the
max qnoise state v. {determined by the mean and standard
deviation)

Often the relative change, in %, of the error is important and this is

rdetermined as in (IV-7.B):

de r 3l]el] - Av,
_morm _ e~ — max . _Jd_ (1v-9.B)
€ orm j=1 avj € orm

|

where e ,,n 1s computed at the nominal noise state values.

Example:

An increase in ¢ of 1.0 for all noises is contemplated as it has
been determined that by doing so electrical cable shielding costs can
be reduced by 50%. It is desired to determine the maximum expected

increase in error due te this change.

The existing conditions are as follows

5 - 0 0 _ bll byy
m
2 3 b21 b22
Y1
i =
V2
vy: Mi mean = Q. g=1.0
vo! mean = 1.0 g = .5

c = .005



119

Using (IV-5.B), € orm before the change is

o
0 \)1 =13 (ul + 30'1)
ehorm = (2) (.005) ) max
2v. + 3v v =[2.5 + 3
(2vq 2 max 2 nax (uy 9)
e orm ~ 135

Using (IV-7.B) the change in € orm due te changes in g1 and oy is

b21(bp1v1 + Bagvplavy + byy(byyvy + bypvy)avy

‘é‘enorm = (C)

2"

(Iv-10.B)
Bepom = (.005) 2L2(3) + 3(2.5)) (3) + 3(2(3) + 3(2.5)) (B)
2(3) + 3(2.5)
ey opm = -075

Using (IV-9.B) the relative error increase is

A
norm  _ 'ggg = 55,5% increase

horm

This means that the new error bounds would be *.21. Assuming that the
control system were part of an attitude control system of a spacecraft,
this could mean that as an upper bound on the position accuracy, enorm

before the change was such that the error was 27.7° (57.3°/rad) and

after the change was 12.1°, an intolerable situation. Depending on

how the errors are "weighted" (shown here all the error was assumed
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due to e ), the contemplated change could possibly result in

position
extremely sloppy position accuracy.

Now, the case of both state and input noise will be considered, i.e.
n#0, v+#0. The results will be found to be similar to (IV-2.B) thru
(IV-9.B), although more involved. A sensitivity felationship for the

error is developed similar to (IV-7.B)

de de 3e, orm
norm norm
Ae —— An + Ang + .00+ 4n
norm 1 ma
) 3“1 max anz X ann l‘Lmax
9eh orm %enorm ] % orm .
+ AR+ My o+ . LM
anl max 3“2 max ann
J
d€norm d€n0rm 9€p6rm
\)1 + A\)Z + - aw + A\)r
a\"l max a\)z max a\)r max
(IV-11.B)

The partial derivatives can be determined by expanding (IV—i.B); from

it,
- — -, - - —
n2 1'11-1
r=|lan-a-38yvfl = n3 n,
- - B v
m
n
R S A
— =47
1 -
L 4 L 4 N
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2 -
(b21v1 T byavy oL berr)] + ... + [ﬁn - N1 -

(b(n_]_)]_vl + b(n,l)z'ﬂz + ... b(n_l)rvr)]z + [(_a‘nnl -

Y

a,_ 1Ny = -« -alnn) - ﬁn - (bnlvl + bn2v2 + ... b_ v )]2

nr r
(IV-12.8)
also
— 2 2 2

[l = gy + g2+ coo 0, (1v-13.5)

3enorm

- C [%j - nj—l - (bjl\)1 + bj2v2 + bjrvr)]

J

if §=2,3, ... n

if j=1

(IV-14.B)



3enorm L
— - = [%c nj+l - nj - (bjlv1 + bj2v2 + ... bjrvr)]
on. J
]
r'nc'm:[nal
if j=1,2, ... (n-1)
(IvV-15.B)
[_C (agny = 2, gnp = ee TA) 7Ty
-t
nominal
if j=n
e a-l
__I&I_‘E__ = — n - + T . .
v, ¢ fi-;l [“1+1 ny ~ (Bygvy T ByoYy blr\’r)]

(—bij) + I:(-annl-an_lnz- cee magn ) - Mg

_(bnlul + bn2v2 + ... bnrvr)] (—bnj) l
. - |
Fnominal
if = 1,2, ... r

where rno inal is found by evaluating (IV-12.B) at the nominal
operating condition (before a change occurs). Similarly as in (1v-9.B),
a relative or % change in ej,,.y can be determined by dividing both
sides of (IV-11.B) by e, .. evaluated at the nominal value. Inasmuch

as (IV-11,B) thru (IV-16.B) appear so formidable, an example will be

provided to illustrate their implementation in a practical problem.
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Example:

The effect of using a new tracking radar system for altitude
determination is being studied to determine what gross improvement
in positional accuracy can be obtained. The system is to be part of
a satellite launching missile inertial guidance system. From a study
of the overall system, it has been determined that the standard deviation
of position error can be reduced by half, although the new system
costs 50% more than the old unit. The reduction in the overall error
bound is desired to be found.

The basic missile information is as follows:

_ [0 1] 6]
X = x + u Model
o -6 -5 | 1
- - (IV-17.B)
R | 0]
x = Ep + u "Worst-case'"
P -4 -5 | 1 plant

u = 106 a - e_'OOSt), where u is to place the missile in a 106 feet
(= 200 mile) high orbit.

C=1.4 from a priori design of the Q matrix

Noise Statistics

v: u =20, o, = 333.0 ft.

n: u =0, ¢ = 1800 fr.
" "

=
Ik

10 ft./sec., o_ = 100 ft./sec.
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nl Bandwidth = 0 hz.

[H

Ep

[

Bandwidth = 10 hz.

2
The plant-model dynamics and the additive noises are shown in flow
diagram of Figure IV-1.B. The basic earth-to-orbit configuration for

the missile is shown in Figure IV-12.B.

Using (IV-12.B),

P

A -
Thominal = “M/31° - (=0) - (0)  + [(-a)(5400) - 5(+10 + 300)

L

- 27(10) (310) - 1000]2

]

= 43,650
Using (IV-14.B),
P om | (L6) (=) [(-4)(5400) - 5(310) - 2r(10) (310 - (1000)]
oy : | Them

Using (IV-15.B)

SR [(~4)(5400) — 5(310) - 27(10) (310) - (1)(1oooﬂ

3ﬁ2 T om

12

1.4

Using (IV-16.B)
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0 1
-4 -5
®,

0
k, (t) kz(t)

Adaptation

.

Model

Figure IV-1.B. Model-Plant Layout for Example

0 L
~ ”;ltitude, - X
yd ft.
AN
// \

/ \
/ \
/ \
! \

Figure IV-2.B. Earth to orbit Configuration for
System in Figure IV-1.B.
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%€ orm

avl

With only ny Improved,

e
Aerorm = = (4ny)
3“1

Aeyorm = (5.6)(~2700) = ~15,100

Using (IV-2.B), the new e;qoym 18

enorm = (1.4) (43,650) +‘\/25400)2 + (31007 - 15,100
€ orm = 51,300

Assuming the error contributions to the error norm are proportional to
the state noise standard deviations, the érror in altitude measurement
is improved from 62,800 fr. down to 48,400 ft.

Adding a new radar unit may necessitate a‘new computer and wiring
system, resulting in o, incre#sing by 10% and Uﬂz by 5%, in which case

]

e
norm .
®norm ~ Py (4nq) +

aenorm A 8 enorm
(8n,) +

9 3\)1

A

(avy) (IV-18.B)

benorm = ~15,100 + (1.4)(100) + (1.4)(27)(15)(10) = ~13,640

which results in very little change in the error distribution from

'before.
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C. Incomplete Adaptatation and State Feedback

In many situations it may not be practical or possible to measure
all the states of a system, or the available signals may be too noisy
to use for feedback to the adaptive controller. In such cases incomplete
state feedback, incomplete plant adaptation, replacement of certain plant
states with model states, and state estimation are some of the remedies.
However, the theoretical problems of stability then arise because, in
most cases of the Lyapunov-designed type controllers discussed, the
theory required all plant terms adapting and all plant states available.
Any changes in the requirements of the states requires an analysis of
the Lyapunov V and V functions to ascertain stability. "It should be
peinted out tﬁat when developing adaptive controllers according to
Lyapunov theory, modern stability theory such as the Circle criterion
and Popov Criterion cannot be used directly on the plant but instead
investigation of the V and V functions and application of the Lyapunov
stability theorems must be employed. Also, any results obtained will
be a statement of fact or an overstatement of fact. The latter is
because sufficient but not necessary conditions are obtained with
Lyapunov theory.

In the case of incomplete adaptation, some work has been performed
to determine bounds on the norm of the error. Results, however, are
scarce.

For the adaptive rule in [5], an upper bound on the norm of the
error has been developed [10] for a special case. Comsider the single-

input single-output system
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x =Ax +Bu+Cr (plant)
P PP P P
x) = Apx, +Buo (model)
e=x - gp {error)
where
0 I, 0 0
A, = (n-1) B, =|0 c,=]o
n1 *** 3y )
bn Cn

are constant unknown parameters

x 1s an nXl vector
r is a scaler input

u iz an adaptive feedback signal
Using (IV-1.C),

gﬂAmg+A;xp+6r~Bpu
where

A= = (4 - &)

(Iv-1.C)

(1v-2.C)
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When all plant parameters are not adjusted, an upper bound on the norm

of the error is

el 3 Ct) I 2y/n E;nmisgil |3mg | + ]E;l [%]
ell <

A(Q)min 1-2+/om qinlshi[

(Iv-3.C)

and (1 -~ 2 \/nm ainlsnil) > 0 is a sufficlent condition for a region Ry
guaranteeing boundedness of the tracking error. Where
AQ pay 2 Q) i, 2re the maximum and minimum eigenvalues of Q
(see Chapter II)

qip = max (q; of unadapted parameters- i

Iy | = max Iy ()]

m = number of unadapted plant terms ajj; m < n

If there is complete adaptation then m = 0 and ﬁn does not appear in(IV-
3.C). Then ||EJ| = 0 in steady state and the error is asymptotically
stable in e.

In another study {9], a different adaptation rule was used than
the one previously discussed and sufficient conditions developed to
guarantee asymptotic stability when all of the plant states are replaced

by corresponding model states. In general, results are scarce however.

D. An Adjustment Technique For Obtaining Time-Invariant Error Dynamics

In Chapter II a design procedure for selecting the various adaptive

gain parameters for a class of model-reference systems was outlined.
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This technique required that step inputs only be applied to the system,

a severe restriction in terms of practical utility. However, simulation.
results have shown that for slowly time-varying inputs the method does
have some design utility. In this section an appropriate modification

is offered to obtain fixed error dynamics despite a wide range of in-

put values. The method still guarantees asymptotic stability of the
system error because all of the originai Lyapunov stability conditions
are maintained.

As given in Chapter II, the basic perturbed error characteristic

equation is

a P
-1 i-1
2z ansj 2 Kys

1 +=d= Ly 1=p -0 . (1I-16.B)

siy (s)

Similar to (II-11.B) and (II-16.B) it can be shown that, before sub-
stituting model states for plant states and setting =x g =0, j=2, 3,

ses T, the lumped gaing K; are of the form

S 2] & ¥
Ky = ;-_-1 [“nixip(t) J +2j: [‘[‘j (Y)Uj (t)

-

I
- 2
K, §=1 [Bnixip(t} ] +

[onmpwj +

[\vj ((smj(c)2 (1V-1.D)

“Me «Me

L 2
Ky = %_: [\yj (cr)Uj ()

1

where
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wj (-)) - represent a sum of terms of (+); adaptive gain
constant for jth adapted input
xjo ~ represent steady state operating conditions on which the
M derivation is predicated
£
Z: - means a sum of £ terms not necessarily in consecutive order
i (only adapted terms of Bp appear here)

Uj - jth input

£ < r, the number of inputs

and it has been assumed that xip(t), Uj(t) are functions of time. Note
that for constant inputs the K; in (IV-1.D) reduce to those expressions
given In Chapter II, (IV-1.D) being a more general case. Factoring, the

numerator of (II-16.B) becomds

Il v
2 agsitt i Rest™H = k1 (s + 2 (Iv-2.D)
=1 =1 1=1

where

v<n+1 (depends on type of adaptation)
Z; - zero compensator location

k - root locus gain

(II-16.B) then becomes

1+ = (1Iv-3.D)

The Z; are functions of the ratios of qin/qnn i=1,2, ... n and of the
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ratios K1/K2, K2/K3' etc. The root locus gain k is a function of 9hn and

Ry
k= qnnKh

where Ky Is either K;, K,, or K4 depending on the adaptation method. The
design theory says that, for a given set of constant inputs Ug, there
will be a set of error poles determined by {(I1-16.B) which tend to de-
scribe the error dynamics. For different input magnitudes, k will change
and the closed loop roots will move along a fixed locus. Since the U;'s
are used to drive the system and will not be known a priori, the
resulting Ky will vary in an unknown manner, determined by Xip and the
Uy If it were possible to keep the closed loop error roots fixed while
Ky, varied, then time-invariant error dynamics would result.

There are two means of obtaining this result, both of-whiqh are
illustrated 1n-Figuré IV-1.D. In (a) 1s shown a single set of loci,
determined by the placement of fhe zeroes of (IV-2.D). Since_Kh varies,
if Un could be adjusted to keep‘in inverse proportion to K> then as
lopg as the ratilos qij/q stayed constant, the closed loop poles wo?ld

remain stationary on a fixed set of loci since k would remain constaﬂt.

&
g

magnitudes In order to keep the closed loop error roots as a solution

A second technique would allow for wvarying qij (and = type) ratios and

of the root locus of some configuration of the form im (II-16.B). In

order to effect this, some sort of "pseudo-identification" technique

would be required to ascertain where the open-loop zeroes should be
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Jw

Jw
‘-.
(b ) ‘f‘-\. ./-‘? ‘1’ - N Re
oy = L ~

Figure IV-1.D, Two Means of Keeping Fixed Closed-Loop Error Dynamics
(a) Keep the Zerces and Gain Constant (b) Vary the
Zeroes and Gein to Keep Roots Fixed.
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located in order for the closed-loop error poles to be a valid
solution of thelloci.

The first of.the two techniques is of interest here, both from
a practical as well as theoretical standpoint. To illustrate why the
second method is not a practical approach, a brief example will be

given illustrating how the solutionsg of Figure IV-1.D were obtained,

Example:

1 4 k(s +a) (s+b) (s+¢c)_g (IV-4.D)
sﬂm(s)

Ay(s) = 8% + 25 + 2
It is desired to force the closed-locp error roots to be at
Py = -4 P, = -6.449 Py = -1.551 (IV-5.D)

To do this it is necessary for (IV-4.D} to be the roots of

3 2+ ka + kb + ke 52 + 2 + kab + kac + kbe

s +
1+ (1 + k)
/

\

where for this example two of the three zeroes in (IV-4.D) are due to
ratios of o, 8, p, v, §, and o. Either one or more of the zerces a, b,
¢ must then be determined in order to keep {(IV-4.D) as solutions to

(IV-5.D) as k varies. The a, b, ¢ can be found by iterative solution,
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g3 + psz +qs +r =20

1 2 =1 (953 _
a13 = 5 Gq - p9) a5 = 57 (2p 9pq + 27r)
az 3
12 11

—_ < 0 for 3 real unequal roots

-a a ~-a a all
{12 ‘/ 5 J 12 J 55 (1V-7.D)

= )24
sl A+B+ 3
A+ B A+ B
s, = - %5=1+ % +j( RE (Iv-8.D)
A+ B 3 A+ B
53= - 2 3 —j 2

By computing k, a, b, and ¢ are determined such that (IV-6.D) are equal
to (IV-4.D). 1It is clear the technique requires an iterative non-linear
technique to obtain a set of possibly non-unique zeroces a, b, c.
Complexity and computation time are severe drawbacks to this technique.
A more straightforward adjustment method is the first one discussed.
It will be shown to involve a straightforward algebraic technique
suitable for on-line computer use.
Using linear design techniques, an appropriate root locus gain
k may be selected to obtain an acceptable transient error response.
This gain in turn fixes the closed-loop error pole locations. Since
Kh(t) varies with the inputs, in order to keep k constant then Qpy Must

vary inversely to K (t)
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k .

q () = —‘3;:?——{—;"9 (Iv-9.D)
whére Kh is K,, Ky or K3 depending on the adaptation method. Since
xim(t), Uj(t) must be available to implement the basic adaptive gain
equations, and the ¥; are a priori fized, then there is no difficulty
with physical realizability of (IV-9.D), where Kh 1s given in (IV-l.ﬁ).

The case when K is zero, the regulator problem when all Uj are
zero, must be considered. In this case (IV-9.D) would become singular
and Qp = would result, an impossible situation. A simple means of
skirting this problem is to place a saturation operation so (IV-9.D) is

replaced by

q () = Khlf‘:) sat(q) | (IV-10.D)
where qg is an upper limit on 4y occurring at a value of Kh = g,
e > 0. The limiting values of ¢ and qg would be determined by the type"

of computational hardware employed.

Since the zeroes of (II—lS.B) depend on the ratios

q | )
_lg‘ j Ld 1, 2, s ey (n—l)
Yan

then if qnn varies the an must be altered also to keep the zeroes (due

to the Q ratios) fixed. From (IV-2.D), the polynocmial expansion is

q - qn

-1 n(n-1) _n-2 1

Qg | 87 + T8 + .00+ (Iv-11.D)
' qnn q'nn
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Defining the ratios as

j 1, 2, “es (n-l)

K

which are a priori chosen, then the necessary adjustment rule for the

would be

qij

an = ajqnn j = 1’ 2, R (n-l) (IV—IZ-D)

The original Lyapunov theory on which the adaptive control theory
discussed is based assumes Q is constant, so to insure this a sampled
data adjustment law employing a zero-order hold for (IV-1.D) and (IV-10.D)
1]

ig proposed. In this way, at any given instant the system will "see

only constant terms for the Q elements. The adjustment rules then

become
n £
Ky (kT) =25 T %, (KT) +27 ¢4 (U, (k1) (IV-13.D)
i=1 3
kg
qnn(k.T) = .—K;;(Ej— Sat(qs) (IV"].A:D)
where

k

H

1, 2, ... sample instants

T

It

sample period, %
ky - desired root locus gain value

- saturation for
Qg value n
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Adaptation
Process

Measurement Transducer

a; b
*?ﬂi (t)... . Kij (...

]
ADAPTATION COMPUTATION x
~R
|§nn(kT9*‘ kd i
n 2 £
ed xg (kT)2+ ¥,0, (kT)
1=1 " g e
qnj(kT}ﬂaj qnn(kT) j=1,2,...(n-1)
U

<

Figure IV-2.D. - Adaptation Process Using Dynamic Error Adjustment Technique.

J{' o

8ET
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The question of transient response difficulties and the possible
instability of the adapted system with the sampled-data adjustment law
arises. .The Lyapunov theory used guarantees that as t + =, e =+ 0, one
of the requirements being that Q be constant. If so, then llgjt)|| will
continuously decrease after starting at some peak value since 6(g,t) < 0.
This is 1llustrated in Figure IV-3.D (a), (b), (c) wherein different
values of Q are applied at discrete time points. If adaptation is

initiated at t = t, there will be a § matrix @ = Q(l). If at time

1
t =ty >t;aqQ adjustment is performed, then

ety - a3 |] < ety || < |letes + a3 ]| (1v-15.D)
2 2

and t, merely becomes a starting time for a new adaptive controller
configuration. The sample rate for the Q adjustment is of no conseguence
as far as stability is concerned, the higher it being the better the
approximation to time-invariant error dynamics., As an estimate of the
lower bound for the sample rate one might invoke Shannon's Sample Theorem.
A continuous adjustment law using (IV-9.D) and (IV-10.D) cannot
be employed and asymptotic stability be assured because by using the
adaptive laws in [5, 6, 7], the resulting V terms are sign indefinite.
It could be that such a continuous adjustment law would be stable, since
Lyapunov's theory provides only sufficient conditions, it is just that
nothing definite can be said. It should be pointed out, however, that
simulation results have revealed that the continuous adjustment law
works well in practice.

Since the Q elements are adjusted, it i1s necessary to insure that

the p.d. ¢ and n.d. Aiq + QA conditions are met. Since all Q elements
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(-Q(c’) Conatant

Adjustment
Time &t

T

1

cy = V, "Emergy-Like
Values"

€1

€17 %27 % (o) ' .
Figure IV-3.D. Error Reduction Using Lyapunov Adjustment Technique (a),
(b} Timing and Error Reduction, (c) Typical Error oo
Trajectory Illustrations. ’
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I3 .
are adjusted in the same.proqortion, if at t = tos G = qnno

L) o o]
921 %2 - - - g
- o o o
Q|t0 - qu q22 L q2n
o 0 o

i ‘uqnl %2 qnn_

= - 1
and at t t1, qnn Uns then

Q|t1=CQ|to C>0

T T
AQly, * Q'tf\n =C [Amqlto + QltoAm]

the p.d. and n.d. conditions are not changed by the adjustment technique
(they are relatively changed, however).

For the case of step inputs of different values at different times,
the necessary adjustment scheme is particularly simplified, as K;; then

is in the form

_ o2
Ky = g X1g +):_j ijj (Iv-16.D)

but since

T
xl;Jl = ); G(o)Uz (Iv-17.D)

1

then the necessary adjustment equation for 9, ¢an be written as

k
= _ desired R
Inn T 2 Z v (Iv-18.D)
nt (‘i‘;l H +Vj/: %
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a particularly simple form to implement.

Example 1:

1 2 g (s) 2 G _(s) = 2
u o &2 + 25 + 2 P g° + 28 + aZE

Using the adaptive law in [6], an a priori determined acceptable error

characteristic equation is

10(s + 2)2
s(s2 + 28 + 2)

1+ =0 (Iv-19.D)

The root locus of (IV-19.D) is shown in Figure IV-4.D. Since x.© =

1n

o .
Gm(o)U , selecting yp = 10, Bay = 5, 915 = 2q22 then

2
k= 5(122”0 . and q22 =

To account for U® = 0, a saturation value of 4y = ag = 1000 was used.

The resulting q,, versus Kh characteristic is shown in Figure IV-5.D.

Shown in Figure IV-6.D is the result of using the adjustment scheme
in (IV-18.D) for the cases U = .06u(t), U = 5u(t), U = 3u(t). These
results are compared with those obtained without the adjustment rule in
(a), (b), (c) and the three input adjustment cases are compared with the
desired response (based on the mégﬁitude estimation technique). Note

the excellent correllation between the adjustment results and the standard.
A time-varying example using (IV-13.D) and (IV-14.D) was also run.

using
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+ 3

4 23

P
LY

Figure IV-4.D. Root Locus Plot.

quzz(s + qlz/Q22)(S + Kl/KZ) ~
1+ =0

5(52 + 25 + 2)

qlzquz =2 K,/K, = 2

2

o

For k = q22K2 = 10, the closed loop error roots are

Py = —4 P, = —6.449 Py = -1.551
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3 K

Figure IV-5.D. Saturation Curves for 9 Adjustment.

U = sin 3t

The results for varioys samble periods T are shown in Figure IV-7.D,
where the initial error, e, = .1 The particular adjustment process
used employs state measurements xpi(t) instead of U (t) for the sampled-
data update. Note that, even with need for qg (since ;;l§-+ o at a
finite number of points), the time-varying adjustment précess results
in an error response similar to that predicted by the time-invariant
linearization process.

One poiht to note, however, is that unless that sample period rate
T is short enough, the error response ﬁill tend to exhibit characteristics
of the forcing functions Uj(t), i.e. e(t) may exhibit a decaying sinusoidal

characteristic if the inputs are sinuscidal.
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1.0
8-
6o
eft) .4 |
Cmax
.2
|
a 1
4
_____ Unadjusted 6 1
e+ —  Adjustment Scheme
b
Standard (from
Magnitude
Estimaticn 2 1L
Scheme)
2
t=0 s< + 25 + (1.9) ! ! 1 Ll !
1 2 3 5
Time

Figure IV-6.D Error Response Results From Adjustment Scheme
For Various Step Inputs.
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KEY

—_— Unadjusted 4y, = 4q22 = 2

T = .01

Continuous Adjustment

-.2_4,._. ' Time~

Figure IV-7.D. Error Response Using Adjustment Scheme With Sinuscidal
Input.

Time Invariant Adjustment u = .06pu(t)



V. RELATED TOPICS

The earlier chapters of this report have related various topics
concerning the design of ?odel-reference adaptive systems. Theoretical
fesults for implementatioa difficulties such as stability bounds and
noise error bounds have been presented. In this chapter, some simulation
and numerical results for practical implementation difficulties where
no exact mathematical results are presently available will be presented.
These results give a qualitative indication of what the designér could
expect an MRAS control system to look and operate like under real-world
conditions.

A, Simulatioﬁ Results For A Physically Realizable Space Shuttle Pitch-
Axis Controller

An example was given in Chapter II1 relating the developed design
theory of MRAS control to a hypothetical pitch axis controller. Neglected
at that time was the problem of physical implementation. A simulation
example will now be given where in practice the theory of adaptive
control does not exactly fit the problem and hence exact analytical
results regarding stability of such cases has as yet not been developed.
However; from a practical approach, as long as the differences between
theory and practice are not great, experience dictates that results

should be expected to be similar.

147
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In Figure V-1.A is shown a typical Shuttle-type aerodynamic control
model-reference conflguration. This contrasts with Figure II-4.D which
disregards physical limitations. Note that in Figure V-1.A the summing
junction Iy is inside the dotted line which means that it is a mathematical
junction and not a physical entity. The gains from the on-board computer
are instead fed through an electrical junction Iy where an error drive
signal is developed to power a servo actuator to move the aercdynamic
control surfaces. The resulting physical placement of the surfaces then
causes forces and moments on the vehicle, and this is shown by a passing
through bP2 and Ge through bpz. The crucial differences of Figure V-1.A
from I1-4.D are that

(1) time varying, unknown input gains bp and bp are not
adapted as in Figure II-4.D 1 2

(2) the feedback adaptive gains Klza and Kzza are fed back
through bp and b )
1 Py

{3) an external mechanical servo is used to convert electrical
drive signals to mechanical control

These differences alter the theory in the following manner. The
basic attitude controller of Figure II-4.D has a transfer function of

the form

8

2L (s) =

b
(K21 + bpl)
ae

(V-1.4)

2 _ a P _ a P
8 (K22 + 322)5 (K21 + 321)

where bpl, apz, apl are unknown, time-varying parameters. The basic

adaptive control theory outlined in Chapter II relates to (V-1.A), where

the adaptive gains are strictly additive with respect to corresponding
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plant parameters. The equivelant transfer function from Figure V-1.A is

6 bepl
L (s = (V-2.4)

5 2 _ Py p
e 5 (Kzgxfbpl + ay5)s (KZinbpl + a57)

where

K_ - servo gain (dynamics neglected for illustrative purposes
only)
In (V-2.A) the adaptive gains are effectively multiplied by bp Kgy an
1
unknown quantity. This creates two problems

(1) The effects of Kzf, Kzg must reach I, with an effective
positive sign connected with them and if Kgbp. 1s negative,
then an appropriate sign change is called for at Iy,
Failure to do this will lead t¢ instability of the MRAS
controller. This implies that only some gross knowledge of
the sign of Kb need be known.

fpl

(2) bep has the effect of "altering" the adaptive gains
which were computed according to a theory which did not
account for these terms. In effect this means_.that in .
the implementation problem, adaptive gains‘Kzi and Kzg
should be used as feedback gains,

where
a a
Ka1 = *‘21/~
K
) (V-3.4)
a a
K22 = Kaz,.
K
where

a a .
K21’ K22 represent adaptive gains computed according to

(II-18.A) and (II-19.A)
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- -

K a a

01 > Kap

X - best estimate of bep with both magnitude and sign taken
into account 1

- actual electrical feedback adaptive gain signals

Another problem relasted to physical realizability is that of iﬁcom—
plete adaptation of even the Ki? gains. Due tc costs and hardware com-
plexity it may not be possible or desiréble to construct all gains. In
terms of the simpie example in Figure V-1.A this would suggest that KES
might not be adapted.

In Figure V-2.A are shown simulation results for the control system
of Figure V-1.A for the cases of incomplete adaptation and time-varying
feedforward gains (i.e. blef of Figure V-1.A). The simulation conditions
are listed in Table V-1. The parsmeters a,B,Y,G,qij are as defined in

Section D of Chapter II.

G, (s) = EE(S) = =05
1 & (s+1){(s+2)

%igy = =05

attitude(s+1l)(s+2)

5
w
e

n

d1p = 3. dgp = L.

tinitial = 100 seconds (see Figure II-3.D)

Gpy = 4000., Byy = 1000., Yoq = 400., 659 = 100.
app = 4000., Bpp = 1000., ypy = 400., 85, = 100.
ey = em-ep ‘ep = ém-ép

a = 60°, attitude = 65°

Table V=1, Simulation Data for Results Shown in Figure V-2.A.



.05

152

‘ KEY
b, = -.05
. A -
time~inyariant ‘.
\b = _|05
P2

- e e e = CimMe-~varying b (see C,C
pl 1 mde
Figure II-3.D)

b. = -.,05
Py

adapting

—

—
152 153

——

151

Time from booster separation, seconds

Fipure V-2,A, Simulation Results for Incomplete Adaptation

and Time-Varying Forward Gain



153

Note that, although exact theory is not available yet to describe
the error dynamics for the adaptive contrcller subject to time-varying
unadapted terms such as bpl, bp2 of Figure V-1.A and incomplete adaptation
(i.e. Kzg = o0 in Figure V=1.A), the simulations reveal results similar
to those expected from exact theory. With time varying bp1 the errors
were larger than from the exact methods, but the oversall response was
very similar. For the case of incomplete adaptation errors were larger
than expected and there was a slight overshoot not predicted by the
theory, but the overall "shape" of the response was as would be expected
based on the linearization design of Chapter II.

This example illustrates that, from a practicel standpoint, the
Lyapunov MRAS adaptive system has merit.even when many of the mathemsa-
tical idealizatidns are not met in practice. OFf course, simulation
results can only provide a qualitétive guide to stability, but indica-

tions are that practical implementation need not limit the adaptive

contrel approach.
B. RCJ to MRAS Attitude Phase-Over Control During Re-Entry.

During the orbital flight phase, the Space Shuttle attitude is to
be controlled by some form of reaction contrel jets. BSuch a control
system allows a trade-off between attitude error (on the order of 20-3O
usually) and low fuel consumption [23]. The control system for the RCJ
package was designed assuming no sercdynamic forces would be present a
very reasonable assumption at altitudes of 500 thousand feet or more.

However, during re-entry aerodynamic forces begin to build up on the
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vehicle, which, coupled with severe re-entry corridor attitude liﬁits
and unknown time-varying plant parameters, suggesis that an MRAS controller
might be used during the re-entry phase.

Unlike the Apollo and Gemini craft, the Shuttle has large wings for
1ift and it is exactly this 1ift capability which tends to nullify the
stabilizing RCJ control torques during re-entry. This is because the
moments due to asrodynamics very quickly become orders-of-magnitude
greater than these available from conventionsal RCJ systems.

To facilitate the two different contrcl modes, some sort of switeh-
over routine is needed. Some of the obvious alternative techniques for
determining when to switeh from RCJ to MRAS control during the re-entry
profile include

(1) perform a switchover from total RCJ to total MRAS
control according to a fixed criterion (probably
based on Monte Carlo-type simulation data), i.e.
altitude, Mach number, dynamic pressure, attitude-

hold capability

(2) on-line manual pilot switch-over according to his
"feel" of the controls

{3) employ an automatic on~-line technique for propor-
tioning the control between RCJ and MRAS

It is {(3) above which is of interest here.

The RCJI controller is of the form shown in Figure V-1.B, where only
the pitch axis is shown, it being assumed decoupled from the roll-yow
axes. The coefficients Al and A2 are time-varying coefficients due to
aerodynamic parameters, T is the thruster force, Iy the vehicle pitch-
axis inertia. In deep space the A, A2 are zero, but during re-entry

thege termg change to non-zero values. The actual values are unknown
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because of the indeterminate nature of the particular re-entry profile.
With such a bang-bang controller, a reasonable trade-off between attitude
deviation and fuel consumption is obtained. During re-entry, the zero-~
dynamic coefficients alter the RCJ controller effectiveness and the need
for aerodynamic control increases.

A basic adaptive attitude controller for the pitch axis is shown
in Figure II-L.D. Given sufficient aerodynamic 1ift such a system can
stabilize a re-entering Shuttle-type vehicle regardless of the actual
plant parameters. As was illustrated by an example in Chapter II1, the
plant of the re-entering Shuttle can be unstable (without compensation),
and without some form of adaptive control the wvehicle could burn up.

Shown in Figure V-2.B is one possible physical implementation of a
'total' attitude control system. The heart of the system is the 'con-

troller proportioning device"

which determine;, on-line, which type of
control, either RCJ or MRAS should be used at any given time.

Defining control effectiveness to be the amount of influence exerted
on a space vehicle by a particular control system, the basic problem

during re-entry is to optimize this "effectiveness' such that minimum

attitude deviations occur. The control torque due to RCJ control is

Treg = {rL/2) * F (V-1.B}
where

TRCJ = torque due to RCJ system

L/2 = effective moment arm for a single axis thruster

F = net thruster force
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and the torque due to aerodynsmic surfaces as

= 2 . -

Tyras = (€107 )(Sref)(cmae 8e) (v-2.8)
2
+ %pVs e C a
ref m,
TMRAS = torque due to MRAS control
c = reference length
3 = wing effective refeience area
ref
%pve = dynamic pressure
Cm = wing pitching moment derivative due to =z.
Z .

A proportioning signal y representing the fraction of MRAS control as

compared to RCJ is to be determined,
o<y sl

It is hypothesized that this phase-over control be a function of an on-
line measurahle parameter indicative of aerodynamic forces, so it is

assumed that

¥y = f(%pve) (V-3.B)

2y . .
since the dynamic pressure {3pV") is related to aercdynamic control and

ig available. As a simple approach, y is assumed of the form of a

. 2
polynomial in (%pV ),
y = ag t ajx + agxg% »oeo Fax (v-h.B)

(o]

where
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X = %QVE

By 895 8y « . . B 8TE coefficients to be determined

This form of eontrel is hypothesized bhecsause, in addition to being s
function of an on-line measurable parameter, it is simple to implement,
reguires little computation time, and is a continuous function (so there
will be no discontinuity in control). The aﬁount of RCJ or MRAS control
is then determined by the fraction of EDRIV1 , and EDRIVZ shown in Figure

V-2.B, available as a control signal

amount RCJ control = (1-y} - (EDRIV1)
(V-5.B)
amount MRAS control = y * (EDRIVE)
The degree of the polyncmial, n, is assumed to be‘at leastrof order two
{to be explained later), but may be of any size, depending on the number
of data points used.
There are-at least three well-defined control points for a re-—-entering
Shuttle-type vehicle (at least for the purposes of this presentation),
and these three plus any additional points‘based some a priori selected

criteria, may be used to determine the coefficients a; . These three

contrel points are

(1} deep space-full RCJ control

(2) atmospheric flight at = 150,000 feet-full
MRAS control

(3) the point in time at which T = Tymag =
control is assumed 50% each mode
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Other additional points counld be defined on the basis of a given pro-
portion of MRAS control for a given aerodynamic pressure. The control
points then define a phase-over profile as a function of the dynamic
pressure.

The simplest case is for n = 2, when

Yy = a, taxt 32x2 (V-6.B)

Using this apprcach a parabélic function of the form y = x2 is obtained.
Ideally y should be s single-valued function of x, and the simplest form

is then
¥ = axx (V-7.B)

To further define the three control peints, the following assumptions
have been made:

{a) x . 1is assumed to be zero
min

{(pb) if X<Xps, s ¥ =0
(c) Cm6 is constant during re-entry phase-over (this
is &pproximately correct for the large (>5) Mach
numbers and large (=60°) angle-of-attack encountered
during re-entry)
In order to insure that only rositive numbers are used for y, the ¥y
obtained from (V-4.B) is passed through a saturation device so that the

actual y used as a contrcller signal is scaled to lie between 0 and 1.

This is shown in Figure V-3.B.
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Saturstion Device,
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e - — -

=

Figure V-3.B. Circuit to Insure That the Phase~Over
Control y Lies Between 0 and 1.

Using (V-7.B) the three control points reduce to a 50% phase-over

point and & 0% phase-over point, where the 50% point is defined as

MRAS = .5 (v-8.B)

Equating the two torques and solving for p, the dynamic pressure X50%
can be obtained. This defines control point 2. Using (V-T7.B) a

particularly simple relation for point 3 is obtained. Using

Yy = 32x2
Y= +5 @x = %,
¥3® i. 8x = Xy = 2 X,

So if x, is determined (using (V-8.B)), then X3 is fixed. Computation
of control phase-over is greatly simplified then, requiring only (V-8.B)
and {V-T7.B) An example will now be given to illustrate how this y

function is computed for the simplest case, n = 2.
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Example: x = %pvg > 0

Compatable Bpace Shuttle data

L/e = 50 ft.

F = 250 1b.

c = 200 ft.

S.op= 10% £t.2

}Cmal= ICmG | = .002/degree
e

|éenominal| *1°

o = 60°

b
1.07 x 10 ft./sec

<3
1

X50g is found by equaling (V-1.B) and (V-2.B) and solving for p

(ho) F (V-13.B)

1VS ap C %c!Cma[a + VICm6e||6el

- (50)(250)

4 I
L(1.07x10 )(10 )(200) L s
3(200) (2x107>) (60)+(1.07x10 ") (2x10~2)(1)

- 3
5.16 x 10 8 slug/ft.

It

2
x = oV = .29 1"b./ft.2 ¥y = ax

50%

from which

nS
1l
A% |
0
A%
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Additionsl dats points could be added by specifying y at a particular
(estimated) amercdynamic force level, or some pf the previously suggeated
control points could be redefined. The n = 2 case is attractive, however,
as there are not local optima torcontend with.

A simulation of the control system shown in Figure V-2.B was run
with the control.phaseover scheme discusgsed in the example and the results

presented in Figure V-4.B. and V-5.E.
C. On-Board Control Computer Computetional Requirements

Whenever one spesks of applying modern control theory to & practical
problen, the age old questions of physical realizability and practical
implementation arise. In the case of adaptive control, the concern
generally rests with the complexity of the controller and the difficulty
of real-time operation with limited computational hardware. In this
sectiocn the computational requirements for implementing s model-reference
system are discussed and some numerical results for a specific example
presented te illustrate computation time as a function of the system
order and the number of inputs processed.

The basic plant dynamics considered were of the form

0 1 o0...0 ] 0 0 ...0

0 0 1 ...0 0 0 ...0
P w1 Ty o
=2 P PP p | £ b .

LO 81 82 _an—l nl 11.2 nr



X 102 radians -~

8

P

a, =0 |

s, = 5.95{

€

(::).All

(:> Ky1 =
(:) Kp1 =

1.0
RCJI

)

(Kz?/‘-OZ) .75 +
(K,3/-.001)

21 .50
a,= 5.95

Y91

.25 4

e

2
WV >

Figure V-L.B, Control Phase-Over Characteristic.

Time -

V-5.B. Control Phase-Over Response.
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where the terms are as defined previously. It is assumed that all terms
are adapting so that "worst caée" estimates will be available. The basic
integration routine considered was the fourth-order Runge-Kutta and the
differentiation process (used only with the Boland and Sutherlin method)
was a basic 2nd oraer Lagrangion interpolation polynomial. Computational
requirements were determined as a function of n{system order), r {(number
of inputs}, p;us computer add, subtract and miltiply times.

The equations considered were

(II-18.A) n of these
(II1-19.4) r of these
(I1-2.4) n of these
(II-1.4) n of these
{IT~5.4) n of these

Using these and the numerical analysis methods mentioned, equations
relating add, subtract and multiply times in terms of n and r were

determined for the cases of [5,6,7]. The results are tabulated in Table

v-2.

Type of Adaptation Computation Time Function

1. Boland and Sutherlin [T7] Ty = (?n2+ Srn + 48n + 5r° + 3hr} M
+ (§n2+ Srn + 4Tn + 5r° + 28r) S
2. Gilbart, Monopoli, and T =T - LSn - h5p
. G B

Price [6]
3. Winsor and Roy [5] Ty = Tp - S54n - Shr
8 = subtract time (assumed equal to Add)} M = multiplication time
n = gystem order r = pnumber cof inputs T = computation time

Table V-2. Computation Cycle-Time Equations
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Using data for a particular class of aerospace computers [24],
computer time requirements were determined using the date in Teble V-2,
and are presented as a series of graphs showing computation time per
cycle versus system order With the number_of inputs as a parsmeter.

Figure V-1.C shows the computation time, in order to perform a
single set of computations for the adaptive gains at a given instant, for
the Boland and Sutherlin adaptation technique. This method [T] repre-
sents the greatest computationsl load of the three methods discussed,
but as shown in Figure V-2.C, this upper bound on the time is sbout equal
to that for both [5] and [6]. The small differences between computation
times for the various methods shown in Figure V-2.C means that computation
time need not enter the consideration as to which technique to employ .
Instead, such factors as the number of terms to adapt and model order
might be of greater importance.

It should be pointed out that the cycle times liéted are based upon
a digital implementation of continuous systems equations. In actual
prectice, most likely a discrete-data set of equations would be imple-
mented. In this way only summers, multipliers and delays would be needed
to implement the adaptive equations. Most 1likely the indicated computa-
tional cycle time would be much smaller for a discrete-data implementation.

The reascn en estimate of the discrete-data implementsation was not
glven was that the adaptive control theory used in this report is based
on continuous systems and thus far, very little concerning exact results
for the discrete case is available. This is an area which has further

research possibilities.
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The previous results given are for the case when the on-board
computer is all digital., In the case of present spacecraft controls, &
hybrid or all analog approach is sometimes used, due to high reliability
and simplicity. Figure V-3.C is an example of the actual adaptive eqﬁation
implementation for an all-analog system, illustrating the difference
between available measurements esnd actusl required computations and

adjustment controls.
D. Use of More Than One Model During Re-Entry

Because of various types of inputs and environmenp that a plant
might be sublected to, it might be desirable to utilize different models
for-different plant operating conditions. The adaptive control theory
discussed is based on time-invariant models, so some sort of switching
routine would be required to change the plant response. lDuring the
transient phase when switching models, the error analysisltechniques in
Chapter II can be utilized (assuming constant .inputs} to describe error

transient response. This is because the analysis theory is based on the

supposition of a Jump change in a plant parameter. If, at t = tl

m

G (s) = &
n+ n-1 + m n-2 + m
S -&n_l S B.n_z . 5.0

P

GP(S) = 2
st g Pl 4 g P24 gD
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and it is assumed

a;.a (t]) = aﬁ’ (t]) j=1,2, ... {n-1)

+ -
and then at t = tl the am jump to new constant values, the plant

J

transient response would be the same as if

- -

m - _ P -
3, (tl) = (tl)

where
m, - _om , + p’ - P .t
ay (t) = a8y (t;) sy (t)) # &y (2))
+ - C+ -
_ P, P _.p
and at t = t, the a jumped to values 8, (tl) 8y (tl).

Under such circumstances the new model at t = tI would be used aé Am(s)
in (II-16.B). This shows then, that a step change in a model value has
the same effect as a step change in a plant parameter. To the plant -
system the.unchanged plant parameters appear as step changes with

respect to the new model parameter values.



VI. GSUMMARY AND CONCLUSIONS

A. Summsry

A large number of generally related topics of stability, analysis,
design, and implémentation of & class of MRAS controllers were presented.
In order to employ these techniques in one grand design package, the
following design synopsis is presented.

With a plant and model in the form

where A, B are given by (II-15.B) a basic error characteristic equation,
given in (II-16.B) was derived for the adaptive gains given in (II-18.4)
and (II-19.A) for the system defined in (II-1.A), (II-2.A), (II-3.A),
(II-4.A), and (II-5.A). Using these, and given a knowledge of the a4y 3
retios, the fixed adaptive gain parameters a«, B, p, v, §, 0 may be
selected. In case é terms as well as A terms of the plant are adapted,
(Ir1-11.cC) should be employed. To estimate the maximum error eq and the
time increment which passes after a plant disturbance before this
maximum occurs, (II-5.E), (II-6.E), (II-12.E), (II-15.E), and (II-16.E)
are employed.

To determine "zero" placements of sn+q(n_l)n/qnnsn‘l+...+qln/qnn
the technique outlined in section III.C may be used, along with the

nd
computer program QRANGE. Exact analytical results for a 2  order

172
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system were given for (III-2.E) in (III-6.E). An extended stability
bounding criteria, subject to the restrictions given in section III.B
is given in (III-6.B). Although restrictive in when it may be applied,
such & technique does allow the designer more freedom in the transient
error selection.

The effects of stochastic noise on both inputs and states simplify
to the need to minimize (IV-10.A). Error sensitivity under noise
reduces toc an evaluation of (IV-T.B) and (IV-8.R).

In section IV.D an adjustment technique to insure time invariant
error dynamics was presented. The major results are presented in
{Iv-10.D), (1IV-12.D), (IV-13.D), (IV-14.D), mnd (IV-18.D).

Using the equations outlined in this section, a control engineer
with only a background in classical control design could easily design

an adaptive controller.
B. Conclusions

1. The non-linear time-varying adaptive gains can be analyzed in
a linear fashion such thet only classical control knowledge is reguired.

2. The basic design and analysis of MRAS controllers can be
reduced to a series of simple computer programs suitable for interactive
terminal use, relegating drudgery work to computer aided design (CAD)
studies and allowing for maximum flexibility and design by the design
engineer.

3. Analysis of stochastic noise effects can be easily handled

and an upper bound on the error norm obtained.
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L. Analytical results from Chapter IV and simulation results from
Chapter V indicate that even when many of the necessary conditions (i.e.
model and plant of the same order, all states adapting, ete.) are not
met in practice, overall response characteristics and the resulting plant
stability are at worst only slightly affected, suggesting that adaptation
} offers a viable solution to unknown (and possibly time-varying) plant
control.

5. Very little applied research has been performed in regard to
practical implementation difficulties and there is much room for ad-
ditional study in these areas.

Some of the possible areas for additional study include the use of
state estimation for reconstructing missing plant states, CAD of the
design phase, decoupling of multi-variable ad#ptive systems, and effects
of various classes of nonlinearities (especially saturation) on

Lyapunov stability constraints.
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APPENDIX A

Derivation of Defining Equation for Determining
Bounds on the qij Elements '
Using (III—Z.C), repeated below, a matrix equation will be

developed for determining bounds on the 9y § elements.

T 2eq, g25 =
A" Q+ Q4 = - (I11-2.C)

2c
22
ng . 2cnn

The Ciq entries are all greater than zero and can take on values in the
range of 0" to ». The case where the g i's are not necéssarily equal
will now be used to obtain generalized ratios of 933/ and these

) 1/ qnn

ratios compared with those values obtained from a Routh-Hurwity array.

With Ay in the phase variable form (III-2.C) is computed as

D — _
000. .. -a; 417 959 * - - ql£T
m ‘
l 0 0 * L] [} -anz qzl q22 - - - qzn
0 1 0 Ll L) - -* +
.1 . .
[ m L]
([ 000. l—ann d 191 9o Qun |
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T lo100 VI
qll q12 - L ] L] qln - - . L]
qzl q22 . s » qzn 0 0 ]- 0 « e e
- ] 0 0 0 1 . e @ 0 = —C

1 Im
91 T2 ¢ ¢ 0 9p | | 731 T2 - ¢ T8y,

- (a-1)

Expanding, (A-1) simplifies to (A-2) shown on the following page.
The left hand side forms a symmetric matrix, so when equating the
matrices term by term there are only n(n+l)/2 linearly independent

equations. Using the fact that
T A = [b
AmQ"'Qm‘[ij]
where by,. = b,

the equations are

-~u m b
29,201 ¢4

m m __
9117 910%2 T 99,%m T 0

o1 m_
927910%3 ~ 931 = O n terms

m m _
913 %1n%4 " Y%p®nl1 T 0

. n n )
U n-1) Yipmm 7 ey T 0 (A-3)



[

m
Qn%1

m
0201

_q3nanlm

- ' m
U n%n1

m
“9n13n1

m
4117951%2

_ m
921791%3

m
- a
Li‘(n—l)l T1?an

m

9117 9n2,2
-~ m
9217995202

931793p8,2"

'_ m
4n1 9nan2

m

* 91(n-1)"91n3pp
m

+ 492 (n-1)"92npp

_ m
* 93(n-1)"93n%n

' _ m
‘ qn(n-l) 9nnnn

- m
In23n1
91279 53,,"

- m
q22 qnz an3

- a @
q(n--l)2 qn2 nn

A

-

m
hndn1

_ m
0% %2

q2n qnn n3 +

(n-1)n nn nn

pa—

—

chl

(A-2)
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2 q17 = Goany" = "20y,
122 * 913 ~ 9%n%3 - BoPn2
23 * 14 ~ 9207 at ~ Yptag T n-1 terms
2(-1) * éln b anannm - qnnan?.'
}
j

n-2 terms

2 terms

m
2 q(n-l)n ~ 90200 - _zcnn 1 term

Defining n(n+l)/2 = m, (A-3) can be placed in the form
AE - -tl (A-l*)

where
A - mxm constant matrix

T -
x = [qll 912 ++* Q10 92 923 »cr 92n 933 cc--- qnn]

lxm vector (A-5)

b - lxm vector made up of 0's and (-c;;) terms



where

RS

(n-1)xm

12

22

23 7

n4 LR}

4n

.« -8

nl

q
nn

€81
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qll q12 ql3 cas q22 q23 q24 eee 0 4u qnn

T— - - -— -—
b el [:cll 0 0 e s sz 0 0 [ ] 0 ara Cnn] (A 6)

For the general case, the entries in the A and b matrices of (A-4) are

very detailed, hence an explanation is in order.

A may be partitioned into n sub-matrices, the sub matrices de-

creasing in size from nxm to 1xm in steps one 1,

-

(n-2)xm qll v qln . oo q23 bea e q2n ve q3(n-l) 43, vee d

K 0 11 a0 ]
(3) ) m
A = | . -
an4
1 1
m
“4an 403

Am)
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fhese A(k) sub-matrices may be generated accordiné to 4 basic rules. To
simplify the explanations, elemental locations will be referred to in
terms of the row number of the kth sub matrix and the column location

th element, i.e.

by the location of the qij

973 932 913 *** Qp ' 9n *c 93p 00 9np

—

A

A(2)

A(n)

The qijEE element in x can be determined from

i-2
K , P={ -i+1)+] (n-2)
P ] 2=0
where -1 A
z (n=2) = 0 by definition
£=0
The four rules for construction of the A(k) are:

(1) diagonal of 1's starting in row 2 of qy,, k = 2,3,""*n

(2) diagonal of 1l's starting in q(k—l)k’ k=1,2,"**n
where qp; is disregarded

(3) in q,, colum, sequence of -anjm =k, k+1,*'n

(4) "diagonal like" array of —ankm from q, entry to Unn

entry.
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As an example of this technique, for the fourth order plant-

model system, where

o 1 0 0
0 0 1 0
= s, Q Syrmetric
Ay o 0 0 1 Lxch
T g T -a " -a "
- b by l+3 l‘h ]

the resulting "A" matrix of Ax = b is given on the following page.
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A

A3

A®

q13

12

413

914

A

m
—a52
Ta43

agy"

842
843

- ™
44

33

944

(81



APPENDIX B
Phase Variable Transformation

The derivation of the perturbed error characteristic equation
given in (II-16.B) requires that the plant and model state matrices

be in the phase variable canconical form

0 1. 0 «ee O
Am =(0 0 1 .ea 0 (B-1)
L m . m _, m _ m
4n0 3n1 %2 *** "%a(n-1)
where n D n-1 n n=2 o
s + ) (a-1)S + ah(n—Z)s + .. +ahls + a = 0 (B-2)

nQ

represents the characteristic equation of the model. The conditions
under which a transformation exists which will result in a coordinate
transformation from one state space into another is given in this
Appendix, along with the transformatiom.

Consider the time-invariant nth order model

z =Kz + Du : (B-3)
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where
uis r x 1 input vector

K is n x n matrix not in the form of (B-1)
D is n ¥ r matrix
2z - n x 1 state vector

D can be written in the form

| ! [
D=|d; dy...d, (B-4)

| | l
where the d; i = 1,2,***r are the colummn vectors of D. It is

desired to determine the transformation matrix T, such that

z=Tx {B-53)

and the conditions under which T exists. A necessary and sufficient

condition for (B-3) to be transformed to the form

X = Ax + Bu (B-6)

where A is in the form of (B-1), is that the system be controllable.
This is true if at least one of the matrices Q; has rank n,
where
. | !
Q; = |d; Kdy szi oo g1 g (8~7)
' | | | 1i=1,2,"'*r

and Q, is the controllability matrix of the system in (B-3). If one
i

of the Q; has rank n, then a transformation matrix T will exist such
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that 4
z=Tx

and T will transform a system in the form of (B-3) into the form of

(B-6), where the matrices K, A and D, B are related by

o -1
A= T IKT B=T D (B-8)

The B matrix is of the form

B = b21 b22 “v e bzr =i b b2 oo br : (B"g)

. [

LP“I | bn2 cus bnr_

where in general at least one of the column vectors b; is of the form

]

b, ={ 0 i=1,2,"""¢r : (B-10)

[

A straightforward technique for computing T is given in [20].

If (B-3) is such that K is in the form of (B-1), then no trans-
formation is required. In this case, D (or B) may consist of any
combination of n x r terms. In general, when the plant model dynamics
are such that the system matrix is in phase~variable form, then the

system flow model will appear as in Figure (B-1).



nn

®n(n-1)

Figure (B-1)

anl

Flow Diagram of a phase-variable canonical form.
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In order to possess physical meaning, the artificial states x
must have a one-to-one relationship with those of the original state
gpace. Assuming that one particular state of the original system is

the major "output" {(e.g., an aerospace vehicle attitude, the flow rate
P

of a chemical in a refinery, etc.) and

_— tlr_
T= | — ty . {B~11)
|~ nr |
is such that
t. = ({1 0 0 *** D) (B-12)

1r

then there will be a one~to-one correspondence Between the actual state
zl and the artificial state x;. In a more practical sense, if the
"0" elements of.(B—lO) were very small (with respect to 1) non-zero
numbers, the design results using the error characteristic equation
with the artifieial states should provide reasonable engineering
results for the actual state Zq. Note, however, that there need not
be any simple relation between 2z, and x; if { > 2,

A positive aspect of using the configuration given in (B-1) and
{(B-9) is that a well defined transformation matrix T can, in general, be
determined for a multivariable system such that the system matrix is in

the phase variable Frobenius form. In most application work involving

multivariable systems, a constraint on the '"B" matrix as to the
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particular form it may possess severely limits the form the "A" matrix
may take on [21, 22]. The linearization procedure for the error
equation, however, places no restrictions on the form of the B matrix.
The resulting transformation is non-unique, as is to be expected with

multivariable systems, but is straightforward in application.



APPENDIX C

Derivation of an Trror Bound with
State and Input Noises Present

The noisy plant discussed in Chapter IV is the basis for the
derivation of the following gross error bound. The model and plant

equations are

A x, + Bor(t) B Cad

5]]1=
=, = AOEp + K(t) 3p(t) + Bpgﬁt) {C-2)
€=x - gp(t) = e - n{t) (c-3)

Differentiating (C-3) with respect to time and substituting in {(C=2)

and (C-1),

&= Apxy t Bur(t) - [4gx, + K(D)R () + Bpu(e) + n(e)]

(Cc-4)
Defining
A, = Ayt K(t) (c-5)
u(t) = x(t) + v(t) (C-6)
gp(t) =X, + n(t) (C-7)

" {C-4) can be written as

& = Agxy + Byr(r) ~ [AR, + sz(t) + By (£) - Agn(t) + n(t)]
* ApRp - ApRp | (c-8)
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Combining terms, (C-8) simplifies to

€

Amg + [Am - Ap]_gp + [Bm - Bplg(t) - Bpgﬁt) + Aoﬂﬁt) - ﬂft)

€ = A€ + AR, + Br(e) + (-Bu(t) + Agn(t) - n(t)) (%)

(C-9) is the noise-presence equivalent to the noise free case of
(II-7.4), where now the external input is xr(t) instead of u(t).

The Lyapunov function for the Boland and Sutherlin [7] method is
now modified so as to be p.d. in &, u(t), and gv, the available error,

input and plant states

need 12 L]
V=808 + —— <aij + Bij &, q
1=1 j=1 oi3 £y Tt pd
) el T el 2
+ pij —d & q + pij & qri%
dt =1 k kiﬁpj i=1 j=1 k=1 k*ki%p
P 2L 1 n)
+ ~—=—4bij + 8ij équiu + oij 8, qpsu
i=1 j=1 YiJ k=1 3 aE k=1 k=ki™j
D) o) : (c-10)
+ oij & q,.u -
i=1 3=1 =1 © KL

where the notation is analogous to that in Chapter II. The time

derivative of V is

v=g8lge+ e



n n n .
+ 2 Z E olj Z e, gy 4U 4 & q, .u, (c-11)
i1 §e1 o ke1 © NP3 @E L KTk

With a'.ij and bij chosen to implement physically realizable controls,

by n
aij = -aij Z équiﬂpj - 8ij '(dﬁ:' X équiﬁpj
k=1 k=1
c-12)

—pij 42
at 2

p:'M::I

2 .
qui i



+

E E Bij E o
q

L b oy ¢ % ki¥py
] ] elayal)

tl aij & é.q
Rt gt L, Cx®pd
I ] eMaydd )

eL) aij d 8.q; 2
i=1 j=1 EI§. aZ k=1 F P
193 11 n

Blipij [ 4§
§=1 §=1 = {;t E=1 k%P3
n n . i n d

1 .
I I
n n 2 n
P oY e n d Y e
n I 2 n

pij d d

k=1

n r oy

bij bij 613
Il =gt ]
i=1 §=1 Y 1=1 j=1 iy
n r n

5§13 d

bij & q, .u

§=1 §-1 viy oo EE £=1 K1y

D] Mg ]
: bij & q .,u
1=1 §=1 Y3 dt k=1 K
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. n n
bij = =-yij E équiuj - §1ij %? E équiuj
k=1 k=1
{C~-13)

a ¥
dt” k=1

Substituting ai] and bij into V results in
ve=eTaTo+0a)e+ 2 (A - A)TQe + QA - A%
ghugle + arge + 8,y - 408 + £y - A%,

T _ T T - _ oI T,
+r (Bm Bp) Q¢ + & Q(B BP)I_ E.Bp Qé

AT T T T T
gaB,v + n'AyTee + Eosgn - n'E - &'

I oY ) D1 eud
-2 aij . q..% . -2 Bij(} #&.q )
i=1 3=1 k=1 < *L7P] =1 j=1 k=1 © kiPJ
n r n n r n 2
-2) 1 bi3 ) &agguy-2) ) 813Q &eapguy)
i=1 j=1 k=1 i=1 j=1 k=1
which reduces to
T, T n o n 2
veglageraape -2 ] b B &k )
i=1 j=1 =
(C-14)
n r n 2
- 2 Z z 6ij(z équi“ﬁ) + 2 E?Q[AOQ‘- n - B v]
i=1 j=1 =1 "

This function, without further information, ig of an indefinite form.

By using a bounding proceas [ 9], (C~14) can be written as

2
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n n n 2
ve+reTaag+Q+qare-27 1 i3 é&.q .2 .)
*n . i=1 j=1 k=1 ¥ i1 %3
n r n 2
-2757 ¥ 81i(Q & dpiuy) + ||qe]|T (C-15)
i=1 j=1 k=1 ,

where I' is defined by (IV-7.4), (AmTQ + QAm) forms a symmetric

matrix, so equating
Ty - _/a T
HH = (Am Q+ QAm)

then

- -1
rllg| = r||ou"Hel| < r|lou]] ||mel] (c-16)
Lf ' -1 -1
|[ue]| >rl|Ql] [la 7| >r[fea 7|| (c-17)
then -1 2 T
rlleel| < rllau || ||mel| < |luef|” = -&"(a T + Qape
(C-18)

and V will consequently be negative definite.
If Ais an n x n matrix and x an n x 1 vector, the norm of Ax

will be defined to be
||ax|| < M||z] (C-19)

where M is the smallest positive number for which (C-19) holds, where

||§H is the Euclidean norm. Using (C-18)

%

T k
Aicagre-aay el < |[Hel] <a

T
(4,70 - aa)  []éf]

(C-20)
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where A (A) is an eigenvalue of the matrix A. Defining

el =x@

Bl ! (C~21)

1

3 T
A (—Am Q - QAm)min

From (C-19) thru (C-21), (C-17) can be used to obtain

el > Qmax r=p (c-22)

— T - .
A (-4 Q- Qa)

min

This represents an upper bound on the norm of the error vector & in
order to quarantee V is negative definite (n.d.). Very possibly

||e|| could be less than indicated by (C-22) and V still be n.d.; it
is simply that nothing can be said then., Similarly, iﬁ for some

|I§J] <p G became positive definite then the equilibrium state would
be unstable in the sense of Lyapunov and the plant would be driven

such that the error & increased to the point where V was n.d..



